[1] R. Akhmetshin, A. Razin, V. Ovchinnikov, A. Skripin, V. Tsipilev, V. Oleshko, V. Zarko, A. Yakovlev, Effect of laser radiation wavelength on explosives initiation thresholds, Journal of Physics: Conference Series, IOP Publishing, (2014) 012015.
[2] M. Borhani Zarandi, H. Amrollahi Bioki. Effects of Cobalt Doping on Optical Properties of ZnO Thin Films Deposited by Sol–Gel Spin Coating Technique. Journal of Optoelectronical Nanostructures. 2(4) (2017) 33-44.
[3] M. Shirkavand, M. Bavir, A. Fattah, H. R. Alaei, T. Najaran, M. Hossein. The Construction and Comparison of Dye-Sensitized Solar Cells with
Blackberry and N719 Dyes. Journal of Optoelectronical Nanostructures. 3(1) (2018) 79-92.
[4] N. Roostaie, E. Sheykhi, F. Japelaghi, M. A. Bassam, S. Tavaddod, B. Sajad. A Thin Layer Imaging with the Total Internal Reflection Fluorescence Microscopy. Journal of Optoelectronical Nanostructures. 2(3) (2017) 47-54.
[5] M. Zoghi. Reflection Shifts in Gold Nanoparticles. Journal of Optoelectronical Nanostructures. 3(1) (2018) 1-14.
[6] D. N. Herreros, X. Fang. Laser ignition of elastomer-modified cast double-base (EMCDB) propellant using a diode laser. Optics & Laser Technology. 89 (2017) 21-26.
[7] H. M. Wang, X. Chen, C. Zhao, NEPE propellant ignition and combustion under laser irradiation, Advanced Materials Research, Trans Tech Publ, (2014) 10-14.
[8] N.-S. Jang, S.-H. Ha, K.-H. Kim, M. H. Cho, S. H. Kim, J.-M. Kim. Low-power focused-laser-assisted remote ignition of nanoenergetic materials and application to a disposable membrane actuator. Combustion and Flame. 182 (2017) 58-63.
[9] X. Fang, W. G. McLuckie. Laser ignitibility of insensitive secondary explosive 1, 1-diamino-2, 2-dinitroethene (FOX-7). Journal of hazardous materials. 285 (2015) 375-382.
[10] I. Assovskiy, G. Melik-Gaikazov, G. Kuznetsov, Direct laser initiation of open secondary explosives, Journal of Physics: Conference Series, IOP Publishing, 2015, 653 012014.
[11] X. Fang, M. Sharma, C. Stennett, P. P. Gill. Optical sensitisation of energetic crystals with gold nanoparticles for laser ignition. Combustion and Flame. 183 (2017) 15-21.
[12] H. Oestmark, N. Roman. Laser ignition of pyrotechnic mixtures: Ignition mechanisms. Journal of applied physics. 73(4) (1993) 1993-2003.
[13] W. Hawthorne, D. Weddell, H. Hottel. Third Symposium on Combustion and Flame and Explosion Phenomena. The Williams and Wilkins Co., Baltimore, Maryland. (1949) 266-288.
[14] E. D. Aluker, A. G. Krechetov, A. Y. Mitrofanov, A. S. Zverev, M. M. Kuklja. Understanding limits of the thermal mechanism of laser initiation of energetic materials. The Journal of Physical Chemistry C. 116(46) (2012) 24482-24486.
[15] B. Aduev, D. Nurmukhametov, R. Furega, I. Liskov. Initiation of Explosion of Pentaerythritol Tetranitrate by Pulses of the First and Second Harmonics of a Neodymium Laser. Russian Physics Journal. 58(8) (2015).
[16] I. Y. Zykov. The critical initiation energy density of PETN with aluminum nanoparticle additives. Modern fundamental and applied researches. 1(8) (2013) 79-84.
[17] X. Fang, S. R. Ahmad. Laser ignition of an optically sensitised secondary explosive by a diode laser. Central European Journal of Energetic Materials. 13(1) (2016).
[18] H. Kim, A. Lagutchev, D. D. Dlott. Surface and interface spectroscopy of high explosives and binders: HMX and Estane. Propellants, Explosives, Pyrotechnics: An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials. 31(2) (2006) 116-123.
[19] J. H. Kim, J. Y. Ahn, H. S. Park, S. H. Kim. Optical ignition of nanoenergetic materials: The role of single-walled carbon nanotubes as potential optical igniters. Combustion and Flame. 160(4) (2013) 830-834.
[20] R. Li, J. Wang, J. P. Shen, C. Hua, G. C. Yang. Preparation and characterization of insensitive HMX/graphene oxide composites. Propellants, Explosives, Pyrotechnics. 38(6) (2013) 798-804.
[21] Z. Yang, L. Ding, P. Wu, Y. Liu, F. Nie, F. Huang. Fabrication of RDX, HMX and CL-20 based microcapsules via in situ polymerization of melamine–formaldehyde resins with reduced sensitivity. Chemical Engineering Journal. 268 (2015) 60-66.
[22] Y. Li, Z. Yang, J. Zhang, L. Pan, L. Ding, X. Tian, X. Zheng, F. Gong. Fabrication and characterization of HMX@ TPEE energetic microspheres with reduced sensitivity and superior toughness properties. Composites Science and Technology. 142 (2017) 253-263.
[23] J.-W. Jung, K.-J. Kim. Effect of supersaturation on the morphology of coated surface in coating by solution crystallization. Industrial & Engineering Chemistry Research. 50(6) (2011) 3475-3482.
[24] W. Ji, X. Li, J. Wang, B. Ye, C. Wang. Preparation and Characterization of the Solid Spherical HMX/F2602 by the Suspension Spray-Drying Method. Journal of Energetic Materials. 34(4) (2016) 357-367.
[25] C. W. An, F. S. Li, X. L. Song, Y. Wang, X. D. Guo. Surface Coating of RDX with a Composite of TNT and an Energetic‐Polymer and its Safety Investigation. Propellants, Explosives, Pyrotechnics: An International
Journal Dealing with Scientific and Technological Aspects of Energetic Materials. 34(5) (2009) 400-405.
[26] C. An, J. Wang, W. Xu, F. Li. Preparation and properties of HMX coated with a composite of TNT/energetic material. Propellants, Explosives, Pyrotechnics. 35(4) (2010) 365-372.
[27] T.-H. Hou, C.-H. Su, W.-L. Liu. Parameters optimization of a nano-particle wet milling process using the Taguchi method, response surface method and genetic algorithm. Powder Technology. 173(3) (2007) 153-162.
[28] S. Babaee, Z. Monjezi, M. S. Tagharoodi. Preparation of epoxy-based insulator and optimization of its thermal property by Taguchi robust design method in double base propellant grain application. Iranian Polymer Journal. 26(3) (2017) 213-220.
[29] S. M. Pourmortazavi, S. Babaee, F. S. Ashtiani. Statistical optimization of microencapsulation process for coating of magnesium particles with Viton polymer. Applied Surface Science. 349 (2015) 817-825.
[30] S. Yim. Selection of Actuator Combination in Integrated Chassis Control Using Taguchi Method. International Journal of Automotive Technology. 19(2) (2018) 263-270.
[31] Z. Khaghanpour, S. Naghibi. Application of the Taguchi approach to optimize ZnO synthesis via hydrothermally assisted sol-gel method. Turkish Journal of Chemistry. 42(2) (2018).
[32] C.-C. Yang, S.-T. Wang. Improvement of Mechanical Properties of Spheroidized 10B21 Steel Coil Using Taguchi Method of Robust Design. Sensors and Materials. 30(3) (2018) 503-514.
[33] E. Olakanmi. Optimization of the quality characteristics of laser-assisted cold-sprayed (LACS) aluminum coatings with Taguchi design of experiments (DOE). Materials and Manufacturing Processes. 31(11) (2016) 1490-1499.
[34] C. Carino. Structural layout assessment by orthogonal array based simulation. Mechanics Research Communications. 33(3) (2006) 292-301.
[35] M. Mahmoodian, A. B. Arya, B. Pourabbas. Synthesis of organic–inorganic hybrid compounds based on Bis-GMA and its sol–gel behavior analysis using Taguchi method. dental materials. 24(4) (2008) 514-521.
[36] K. Bouacha, M. A. Yallese, T. Mabrouki, J.-F. Rigal. Statistical analysis of surface roughness and cutting forces using response surface methodology
in hard turning of AISI 52100 bearing steel with CBN tool. International Journal of Refractory Metals and Hard Materials. 28(3) (2010) 349-361.
[37] D.-J. Lee, J.-H. Park, M.-C. Kang. Optimization of TiC Content during Fabrication and Mechanical Properties of Ni-Ti-Al/TiC Composites Using Mixture Designs. Materials. 11(7) (2018) 1133.
[38] A. F. Neto, A. F. B. Costa, M. F. de Lima. Use of Factorial Designs and the Response Surface Methodology to Optimize a Heat Staking Process. Experimental Techniques. 42(3) (2018) 319-331.
[39] R. K. Roy, A primer on the Taguchi method, Society of Manufacturing Engineers2010.
[40] S. Hosseini, S. Pourmortazavi, M. Fathollahi. Orthogonal array design for the optimization of silver recovery from waste photographic paper. Separation science and technology. 39(8) (2005) 1953-1966.
[41] N. Kang, J. Kim, Y. Park. Integration of marketing domain and R&D domain in NPD design process. Industrial Management & Data Systems. 107(6) (2007) 780-801.
[42] J.-S. Lee, C.-K. Hsu, C.-L. Chang. A study on the thermal decomposition behaviors of PETN, RDX, HNS and HMX. Thermochimica Acta. 392 (2002) 173-176.
[43] K.-S. Jaw, J.-S. Lee. Thermal behaviors of PETN base polymer bonded explosives. Journal of thermal analysis and calorimetry. 93(3) (2008) 953-957.
[44] H. R. Pouretedal, S. Damiri, M. Ravanbod, M. Haghdost, S. Masoudi. The kinetic of thermal decomposition of PETN, Pentastite and Pentolite by TG/DTA non-isothermal methods. Journal of Thermal Analysis and Calorimetry. 129(1) (2017) 521-529.
[45] M. Künzel, Q.-L. Yan, J. Šelešovský, S. Zeman, R. Matyáš. Thermal behavior and decomposition kinetics of ETN and its mixtures with PETN and RDX. Journal of Thermal Analysis and Calorimetry. 115(1) (2014) 289-299.