[1] M. Ghorbanzadeh Ahangari, Effect of defect and temperature on the mechanical and electronic properties of graphdiyne: A theoretical study, Physica E 66, (2017, Feb.), 140-147.
Available: https://www.sciencedirect.com/science/article/pii/S1386947714003592
[2] H. Rahimi, Absorption Spectra of a Graphene Embedded One Dimensional Fibonacci Aperiodic Structure, Journal of Optoelectronical Nanostructures 3(4), (2018, autumn), 45-58.
Available: http://jopn.miau.ac.ir/article_3259_fd0b0ef6f20c392b449ca69ad1d2f918.pdf
[3] A. Abdikian, G. Solookinejad, Z. Safi, Electrostatics Modes in Mono-Layered Graphene, Journal of Optoelectronical Nanostructures 1(2), (2016, summer), 1-8.
Available:http://jopn.miau.ac.ir/article_2044_8b18c60167baa91a0369f64730d82f40.pdf
[4] H. Faezinia, M. Zavvari, Quantum modeling of light absorption in graphene based photo-transistors, Journal of Optoelectronical Nanostructures 2(1), (2017, winter), 9-20.
Available:http://jopn.miau.ac.ir/article_2196_127072bb11b75037590ab77092f278c6.pdf
[5] G. Li, Y. Li, H. Liu, Y. Guo, Y. Lia and D. Zhua, Architecture of graphdiyne nanoscale films, Chemical Communication 46(19), (2010), 3256-3258.
Available:https://pubs.rsc.org/en/content/articlelanding/2010/cc/b922733d#!divAbstract
[6] L. Lin, H. Pan, Y. Chen, X. Song, J. Xu, H. Liu, Sh. Tang, Y. Du, N. Tang, Identifying the stacking style, intrinsic bandgap and magnetism of pristine graphdyine, Carbon 143, (2019, Mar.), 8-13.
Available: https://www.sciencedirect.com/science/article/pii/S0008622318309126
[7] Y. Zheng, Y. Chen, L. Lin, Y. Sun, H. Liu, Y. Li, Y. Du and N. Tang, Intrinsic magnetism of graphdiyne, Applied Physics Letters 111(3), (2017, Jul.), 033101-5.
Available: https://aip.scitation.org/doi/abs/10.1063/1.4993916?journalCode=apl
[8] S. Fotoohi, M. K. Moravvej-Farshi, R. Faez, Electronic and transport properties of monolayer graphene defected by one and two carbon ad-dimers, Applied Physics A 116(4), (2014, Sep.), 2057-2063.
Available: https://link.springer.com/article/10.1007/s00339-014-8400-9
[9] M. Long, L. Tang, D. Wang, Y. Li, Zh. Shuai, Electronic Structure and Carrier Mobility in Graphdiyne Sheet and Nanoribbons: Theoretical Predictions, ACS-Nano 5(4), (2011, Mar.), 2593-2600.
Available: https://pubs.acs.org/doi/10.1021/nn102472s
[10] X. Chen, D. Fang, Y. Zhang, B. Gong and Sh. Zhang, Novel electronic transport of zigzag graphdiyne nanoribbons induced by edge states, EPL (Europhysics Letters) 107(5), (2014, Aug.), 1-6.
Available: https://iopscience.iop.org/article/10.1209/0295-5075/107/57002
[11] Ch. Ge, J. Chen, Sh. Tang, Y. Du, and N. Tang, Review of the Electronic, Optical, and Magnetic Properties of Graphdiyne: From Theories to Experiments, ACS Applied Material Interfaces 11(3), (2019, Jan.), 2707-2716.
Available: https://www.ncbi.nlm.nih.gov/pubmed/29701448
[12] Sh. Zhang, H. Du, J. He, Ch. Huang, H. Liu, G. Cui and Y. Li, Nitrogen-Doped Graphdiyne Applied for Lithium-Ion Storage, ACS Applied Materials & Interface 8(13), (2016, Apr.), 8467-8473.
Available: https://www.ncbi.nlm.nih.gov/pubmed/26998614
[13] M. Zhang, H. Sun, X. Wang, H. Du, J. He, Y. Long, Y. Zhang, Ch. Huang, Room-Temperature Ferromagnetism in Sulfur-Doped Graphdiyne Semiconductors, Journal of Physical Chemistry 123(8), (2019), 5010-5016.
Available: https://pubs.acs.org/doi/10.1021/acs.jpcc.8b10507
[14] Zh. Feng, Y. Ma, Y. Li, R. Li, J. Liu, H. Li, Y. Tang, X. Dai, Importance of heteroatom doping site in tuning the electronic structure and magnetic properties of graphdiyne, Physica E 114, (2019, Oct.), 1-9.
Available: https://www.sciencedirect.com/science/article/pii/S1386947719305831
[15] Zh. Zhe, L. Qun, W. Xuanmin Zhu, Modulating the electronic properties of graphdiyne nanoribbons, Carbon 66, (2014, Jan.), 504-510.
Available: https://www.sciencedirect.com/science/article/pii/S0008622313008804
[16] X. Chen, P. Gao, L. Guo, Y. Wen, Y. Zhang, Sh. Zhang, Two-dimensional ferromagnetism and spin filtering in Cr and Mn-doped graphdiyne, Journal of Physics and Chemistry of Solids 105, (2017, Jun.), 61-65.
Available: https://www.sciencedirect.com/science/article/abs/pii/S0022369716312495
[17] M. Zhang, X. Wang, H. Sun, N. Wang, Q. Lv, W. Cui, Y. Long and Ch. Huang, Enhanced paramagnetism of mesoscopic graphdiyne by doping with nitrogen, Scientific Reports 7, (2017), 1-10.
Available: https://www.nature.com/articles/s41598-017-11698-9
[18] B. Bhattacharya, N. Bedamani Singh and Utpal Sarkar, Tuning the magnetic property of vacancy-defected graphyne by transition metal absorption, AIP Conference Proceedings 1665, (2015), 0500661-3.
Available: https://aip.scitation.org/doi/10.1063/1.4917707
[19] M. Valencia, M. J. Caldas, Vacancy in graphene: insight on magnetic properties from theoretical modeling, Physical Review B 96, (2017, Apr.), 1254311-9.
Available: https://arxiv.org/abs/1704.01906
[20] B. Kang, H. Ai, J. Yong Lee, Single-Atom Vacancy Induced Changes in Electronic and Magnetic Properties of Graphyne, Carbon 116, (May, 2017), 113-119.
Available: https://www.sciencedirect.com/science/article/pii/S0008622317300787
[21] S. Fotoohi, S. Haji-Nasiri, Spin-dependent electronic transport properties of transition metal atoms doped ƒ؟-armchair graphyne nanoribbons, Physica E 98, (2018, Apr.), 159-167.
Available: https://www.sciencedirect.com/science/article/pii/S1386947717311980
[22] J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, The SIESTA method for ab initio order-N materials simulation, Journal of Physics: Condensed Matter 14(11), (2002, Mar.), 2745-2779.
Available: https://iopscience.iop.org/article/10.1088/0953-8984/14/11/302/meta
[23] J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters 77(18), (1996, Oct.), 3865-3868.
Available: https://www.ncbi.nlm.nih.gov/pubmed/10062328
[24] N. Troullier and J. Martins, A straightforward method for generating soft transferable pseudopotentials, Solid State Communication 74, (1990, May), 613-616.
Available: https://www.sciencedirect.com/science/article/pii/0038109890906866
[25] S. Kim, Jin Yong Lee, Doping and vacancy effects of graphyne on SO2 adsorption, Journal of Colloid and Interface Science 493, (2017, May), 123-129.
Available: https://www.ncbi.nlm.nih.gov/pubmed/28088564
[26] J. Yun, Y. Zhang, M. Xu, K. Wang, Zh. Zhang, Effect of single vacancy on the structural, electronic structure and magnetic properties of monolayer graphyne by first-principles, Materials Chemistry and Physics 182, (2016, Jul.), 439-444.
Available:https://www.researchgate.net/publication/305630814_Effect_of_single_vacancy_on_the_structural_electronic_structure_and_magnetic_properties_of_monolayer_graphyne_by_first-principles
[27] S. GolafroozShahri, M. R. Roknabadi, R. Radfar, Spin-dependent structural, electronic and transport properties of armchair graphyne nanoribbons doped with single transition-metal atom, using DFT calculations, Journal of Magnetism and Magnetic Materials 443, (2017, Dec.), 96-103.
Available: https://www.sciencedirect.com/science/article/abs/pii/S0304885317308028
[28] B. Kang, H. Shi, F Wang, J Yong Lee, Importance of doping site of B, N, and O in tuning electronic structure of graphynes, Carbon 105, (2016, Apr.), 156-162.
Available:https://www.researchgate.net/publication/301319525_Importance_of_doping_site_of_B_N_and_O_in_tuning_electronic_structure_of_graphynes
[29] C. Fiolhais, F. Nogueira, M. Marques, A Primer in Density Functional Theory, 1st ed., Springer, Heidelberg, 2003, 100-138.
Available: https://link.springer.com/book/10.1007/3-540-37072-2
[30] S. Datta, Quantum Transport: Atom to Transistor, 2nd ed., Cambridge, Cambridge University Press, 2005, 183-216.
Available:https://www.amazon.com/Quantum-Transport-Transistor-Supriyo-Datta/dp/0521631459
[31] L. Li, S. Reich, and J. Robertson, Defect energies of graphite: Density-functional calculations, Physical Review B 72, (2005, Nov.), 1841091-10.
Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.72.184109
[32] Sh. Abdulkader Tawfik, X. Y. Cui, S. P. Ringer and C. Stampfl, Large spin-filtering effect in Ti-doped defective zigzag graphene nanoribbon, Physical Chemistry Chemical Physics 18(24), (2016), 16224-16228.
Available:https://pubs.rsc.org/en/content/articlelanding/2016/cp/c6cp01601d#!divAbstract
[33] M. M. Ugeda, I. Brihuega, F. Guinea, and J. M. Gomez-Rodr.guez, Missing Atom as a Source of Carbon Magnetism, Physical Review Letters 104, (2010, Mar.), 0968041- 0968044.
Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.104.096804
[34] B. Kang, H. Ai , J. Yong Lee, Single-atom vacancy induced changes in electronic and magnetic properties of graphyne, Carbon 116, (2017, May), 113-119.
Available: https://www.sciencedirect.com/science/article/pii/S0008622317300787
[35] S. Wu, Y. Yuan, H. Ai, J. Yong Lee, and B. Kang, Effects of Double-atom Vacancy on the Electronic Properties of Graphyne: A DFT Investigation, Physical chemistry chemical physics 35, (2018), 1-6.
Available:https://pubs.rsc.org/en/content/articlelanding/2018/cp/c8cp03359e#!divAbstract