Teleportation via an Entangled Coherent Channel and Decoherence Effect on This Channel

Document Type : Articles

Authors

1 Physics Department, Faculty of Science, Razi University, Kermanshah

2 Department of Physics, Razi university, Iran

Abstract

We study an entangled two-mode coherent state within the framework of
2×2-dimensional Hilbert space. We investigate the problem of quantum teleportation of
a superposition coherent state via an entangled coherent channel. By three different
measures with the titles ``minimum assured fidelity (MASF)”, ``average teleportation
fidelity” and ``optimal fidelity (f)” we study the quality of this kind of teleportation.
Decoherence properties of the entangled coherent state due to channel losses are
analysed. For a symmetric noise channel, the degradation of optimal fidelity and degree
of entanglement are calculated. Also by two different measures with the titles
``concurrence” and ``entanglement of formation” we study the amount of entanglement
of a decohered quantum channel and discuss its details. We demonstrate that
entanglement of the decohered entangled coherent state is reduced but not throughly
lost. Finally we find that the optimal fidelity of the decohered entangled coherent state is
more than the classical limit and the decohered entangled coherent state may be useful
for quantum teleportation.

Keywords


[1] M. Aghaee, M. V. Takook, A. Rabeie, The Relativistic Effects on the
Violation of the Bell's Inequality for Three Qubit W State, JOPN, 2, (2017)
71.
[2] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W. K. Wootters,
Teleporting an unknown quantum state via dual classical and Einstein-
Podolsky-Rosen channels, Phys. Rev. Lett 70, (1993) 1895.
[3] D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A.
Zeilinger, Experimental quantum teleportation, Nature (London), 390,
(1997) 575.
[4] C. H. Bennett, G. Brassard, Quantum cryptography: public key distribution
and coin tossing, in proceedings of IEEE international conference on
computers, Systems and Signal Processing, Bangalore, India, (1984) 175.
[5] A. K. Ekert, Quantum cryptography based on Bells theorem, Phys. Rev. Lett 67, (1991) 661.
[6] M. A. Nielsen, I. L. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge, 2000.
[7] A. Barenco, D. Deutsch, A. Ekert, R. Jozsa, Conditional quantum dynamics and logic gates, Phys. Rev. Lett 74, (1995) 4083.
[8] D. Deutsch, Quantum theory, the church-turing principle and the universal quantum computer, Proc. R. Soc. Lond. A 400, (1985) 97.
[9] C. H. Bennett, S. J. Wiesner, Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states, Phys. Rev. Lett 69, (1992) 2881.
[10] K. Mattle, H. Weinfurter, P. G. Kwiat, A. Zeilinger, Dense coding in experimental quantum communication, Phys. Rev. Lett 76, (1996) 4656.
[11] E. Knill, R. Laflamme, G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature, 409, (2001) 46.
[12] D. Gottesman, I. L.Chuang, Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations, Nature, 402, (1999) 390.
[13] C. R. Müller, G. Leuchs, C. Marquardt, U. L. Andersen, Optimally cloned binary coherent states, Phys. Rev. A 96, (2017) 042311.
[14] O. Hirota, S. J. van Enk, K. Nakamura, M. Sohma, K. Kato, Entangled nonorthogonal states and their decoherence properties, e-print arXiv:quant-ph/0101096, 2001.
[15] M. Sisodia, V. Verma, K. Thapliyal, A. Pathak, Teleportation of a qubit using entangled non-orthogonal states: A comparative study, Quantum Inf Process. 16, (2017) 1.
[16] H. Jeong, M. S. Kim, J. Lee, Quantum-information processing for a coherent superposition state via a mixed entangled coherent channel, Phys. Rev. A 64, (2001) 052308.
[17] W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett., 80 (1998) 2245.
[18] Y. Yao, H. W. Li, Z. Q. Yin, G. C. Guo, Z. F. Han, The effect of channel decoherence on entangled coherent states: a theoretical analysis, Phys. Lett. A 375, (2011) 3762.
[19] S. Hill, W. K. Wootters, Entanglement of a pair of quantum bits, Phys. Rev. Lett 78, (1997) 5022.