[1] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Two dimensional photonic crystals, in Photonic Crystals: Molding the Flow of Light, 2ed ed., Princeton University Press, 2008, 66-93.
Available:
https://www.amazon.com/Photonic-Crystals-Molding-Light-Second/dp/0691124566
[2] M. Noori, M. Soroosh, and H. Baghban, All-angle self-collimation in two-dimensional square array photonic crystals based on index contrast tailoring, Opt. Eng. 54 (3) (2015) 037111. Available:
http://spie.org/Publications/Journal/10.1117/1.OE.54.3.037111?SSO=1
[3] M. Noori, M. Soroosh, and H. Baghban, Highly efficient self-collimation based waveguide for Mid-IR applications, Photonics Nanostructures - Fundam. Appl., 19 (2016) 1-11.
Available: https://www.sciencedirect.com/science/article/pii/S1569441016000067?via%3Dihub
[4] A. Tavousi, M.A. Mansouri-Birjandi, M. Ghadrdan, and M. Ranjbar-Torkamani, Application of photonic crystal ring resonator nonlinear response for full-optical tunable add--drop filtering, Photonics Netw. Commun., 34 (1) (2017) 131–139.
Available: https://www.springerprofessional.de/en/application-of-photonic-crystal-ring-resonator-nonlinear-respons/11939586
[5] M.A. Mansouri-Birjandi, A. Tavousi, M. Ghadrdan, Full-optical tunable add/drop filter based on nonlinear photonic crystal ring resonators, Photonics Nanostructures - Fundam. Appl., 21 (2016) 44–51.
Available: https://www.sciencedirect.com/science/article/pii/S1569441016300268?via%3Dihub
[6] Y. Wang, D. Chen, G. Zhang, J. Wang, and S. Tao, A super narrow band filter based on silicon 2D photonic crystal resonator and reflectors, Opt. Commun., 363 (2016) 13–20.
Available:
https://www.sciencedirect.com/science/article/pii/S0030401815302558?via%3Dihub
[7] A. Shaverdi, M. Soroosh, and E. Namjoo, Quality Factor Enhancement of Optical Channel Drop Filters Based on Photonic Crystal Ring Resonators, International J. Opt. Photon., 12 (2) (2018) 129-136.
Available: http://ijop.ir/article-1-317-en.html
[8] G. Moloudian, R. Sabbaghi-Nadooshan, and M. Hassangholizadeh-Kashtiban, Design of all-optical tunable filter based on two-dimensional photonic crystals for WDM (wave division multiplexing) applications, J. Chinese Inst. Eng., 39 (8) (2016) 971–976.
Available: https://www.tandfonline.com/doi/abs/10.1080/02533839.2016.1215937
[9] V. Fallahi and M. Seifouri, Novel structure of optical add/drop filters and multi-channel filter based on photonic crystal for using in optical
telecommunication devices, J. Optoelectron. Nano Struc., 4 (2) (2019) 53-68. Available: http://jopn.miau.ac.ir/article_3478.html
[10] V. Fallahi and M. Seifouri, Novel Four-Channel All Optical Demultiplexer Based on Square PhCRR for Using WDM Applications, J. Optoelectron. Nano Struc., 3 (4) (2018) 59-70. Available: http://jopn.miau.ac.ir/article_3262.html
[11] Z. Zare, A. Gharaati, Investigation of thermal tunable nano metallic photonic crystal filter with mirror symmetry, J. Optoelectron. Nano Struc., 3 (3) (2018) 27-36. Available: jopn.miau.ac.ir/article_3043.html
[12] E. Rafiee and F. Emami, Design and Analysis of a Novel Hexagonal Shaped Channel Drop Filter Based on Two-Dimensional Photonic Crystals, J. Optoelectron. Nano Struc., 1 (2) (2016) 39-46.
Available: http://jopn.miau.ac.ir/article_2047.html
[13] Z. Rashki and S. J. S. Mahdavi Chabok, Novel Design for Photonic Crystal Ring Resonators Based Optical Channel Drop Filter, 6 (3) (2018) 59-78. Available: jopn.miau.ac.ir/article_3046.html
[14] R. Talebzadeh, M. Soroosh, and F. Mehdizadeh, Improved low channel spacing high quality factor four-channel demultiplexer based on photonic crystal ring resonators, Opt. Appl. 46 (4) (2016) 553–564.
Available: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-4a7c932c-b3e2-441e-a990-aa4d29e64e96
[15] R. Talebzadeh, M. Soroosh, and T. Daghooghi, A 4-Channel Demultiplexer Based on 2D Photonic Crystal Using Line Defect Resonant Cavity, IETE J. Res. 62 (6) (2016) 866–872.
Available: https://www.tandfonline.com/doi/full/10.1080/03772063.2016.1217175
[16] R. Talebzadeh, M. Soroosh, Y.S. Kavian, and F. Mehdizadeh, Eight-channel all-optical demultiplexer based on photonic crystal resonant cavities, Opt. - Int. J. Light Electron Opt., 140 (2017) 331–337.
Available: https://www.sciencedirect.com/science/article/pii/S0030402617304795?via%3Dihub
[17] V. Kannaiyan, R. Savarimuthu, and S.K. Dhamodharan, Investigation of 2D-photonic crystal resonant cavity based WDM demultiplexer, Opto-Electronics Rev. 26 (2) (2018) 108–115.
Available: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-bd0a9f9b-0e20-49be-b2a1-16a8f4547998
[18] A. Abolhaasani-Kaleibar and A. Andalib, Studying Photonics Crystal
Cavities by Design and Simulation of a 1 to 8 Optical Demultiplexer, Frequenz., 72 (9-10) (2018) 459-464.
Available: https://www.degruyter.com/view/j/freq.ahead-of-print/freq-2017-0189/freq-2017-0189.xml
[19] F. Mehdizadeh and M. Soroosh, Designing of all optical NOR gate based on photonic crystal, Indian J. Pure Appl. Phys., 54 (1) (2016) 35–39.
Available: http://op.niscair.res.in/index.php/IJPAP/article/view/5678
[20] H. Alipour-Banaei, S. Serajmohammadi, and F. Mehdizadeh, All optical NAND gate based on nonlinear photonic crystal ring resonators, Opt. - Int. J. Light Electron Opt. 130 (2017) 1214-1221.
Available: https://www.sciencedirect.com/science/article/pii/S0030402616315261
[21] T.A. Moniem, All-optical XNOR gate based on 2D photonic-crystal ring resonators, Quantum Electron. 47 (2) (2017) 169.
Available: https://iopscience.iop.org/article/10.1070/QEL16279/meta
[22] N.F.F. Areed, A. El Fakharany, M.F.O. Hameed, and S.S.A. Obayya, Controlled optical photonic crystal AND gate using nematic liquid crystal layers, Opt. Quantum Electron. 49 (10) (2017) 45-52.
Available:https://www.springerprofessional.de/en/controlled-optical-photonic-crystal-and-gate-using-nematic-liqui/11983912
[23] H. Sharifi, S.M. Hamidi, and K. Navi, All-optical photonic crystal logic gates using nonlinear directional coupler, Photonics Nanostructures - Fundam. Appl. 27 (2017) 55-63.
Available: https://www.sciencedirect.com/science/article/pii/S1569441017301049?via%3Dihub
[24] T. Daghooghi, M. Soroosh, and K. Ansari-Asl, A novel proposal for all-optical decoder based on photonic crystals, Photonic Netw. Commun. 35 (3) (2018) 335-341.
Available: https://link.springer.com/article/10.1007/s11107-017-0746-4
[25] T. Daghooghi, M. Soroosh, and K. Ansari-Asl, Ultra-fast all-optical decoder based on nonlinear photonic crystal ring resonators, Appl. Opt. 57 (9) (2018) 2250–2257.
Available: https://www.osapublishing.org/ao/abstract.cfm?uri=ao-57-9-2250
[26] F. Mehdizadeh, H. Alipour-Banaei, and S. Serajmohammadi, Design and simulation of all optical decoder based on nonlinear PhCRRs, Opt. - Int. J. Light Electron Opt. 156 (2018) 701–706.
Available:
https://www.sciencedirect.com/science/article/pii/S003040261731639X?via%3Dihub
[27] S. Khosravi and M. Zavvari, Design and analysis of integrated all-optical 2 × 4 decoder based on 2D photonic crystals, Photonic Netw. Commun. 35 (1) (2018) 122-128.
Available: https://link.springer.com/article/10.1007%2Fs11107-017-0724-x
[28] F. Mehdizadeh, M. Soroosh, and H. Alipour-Banaei, Proposal for 4-to-2 optical encoder based on photonic crystals, IET Optoelectron., 11 (1) (2017) 29–35. Available: https://ieeexplore.ieee.org/document/7814409
[29] H. Alipour-Banaei, M.G. Rabati, P. Abdollahzadeh-Badelbou, and F. Mehdizadeh, Application of self-collimated beams to realization of all optical photonic crystal encoder, Phys. E Low-Dimensional Syst. Nanostructures., 75 (2016) 77–85.
Available: https://www.sciencedirect.com/science/article/pii/S1386947715301545?via%3Dihub
[30] T.A. Moniem, All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators, J. Mod. Opt., 63 (8) (2016) 735-741.
Available: https://www.tandfonline.com/doi/abs/10.1080/09500340.2015.1094580
[31] M. Hassangholizadeh-Kashtiban, R. Sabbaghi-Nadooshan, and H. Alipour-Banaei, A novel all optical reversible 4×2 encoder based on photonic crystals, Opt. - Int. J. Light Electron Opt., 126 (20) (2015) 2368–2372.
Available: https://linkinghub.elsevier.com/retrieve/pii/S0030402615004593
[32] S. Serajmohammadi, H. Alipour-Banaei, and F. Mehdizadeh, Proposal for realizing an all-optical half adder based on photonic crystals, Appl. Opt. 57 (7) (2018) 1617–1621.
Available: https://www.osapublishing.org/ao/abstract.cfm?uri=ao-57-7-1617
[33] A. Rahmani and F. Mehdizadeh, Application of nonlinear PhCRRs in realizing all optical half-adder, Opt. Quantum Electron. 50 (1), (2018) 30-36.
Available: https://www.springerprofessional.de/en/application-of-nonlinear-phcrrs-in-realizing-all-optical-half-ad/15333614
[34] M. Neisy, M. Soroosh, and K. Ansari-Asl, All optical half adder based on photonic crystal resonant cavities, Photonic Netw. Commun. 35 (2) (2018) 245-250.
Available: https://link.springer.com/article/10.1007%2Fs11107-017-0736-6
[35] F. Cheraghi, M. Soroosh, and G. Akbarizadeh, An ultra-compact all optical full adder based on nonlinear photonic crystal resonant cavities, Superlattices Microstruct., 113 (2018) 359-365.
Available: https://www.sciencedirect.com/science/article/pii/S0749603617322826?via%3Dihub
[36] M.R. Jalali-Azizpoor, M. Soroosh, and Y. Seifi-Kavian, Application of self-collimated beams in realizing all-optical photonic crystal-based half-adder, Photonic Netw. Commun., 36 (3) (2018) 344-349.
Available:https://www.springerprofessional.de/en/application-of-self-collimated-beams-in-realizing-all-optical-ph/15953808
[37] S.S. Zamanian-Dehkordi, M. Soroosh, and G. Akbarizadeh, An ultra-fast all-optical RS flip-flop based on nonlinear photonic crystal structures, Opt. Rev. 25 (4) (2018) 523-531.
Available: https://www.readcube.com/articles/10.1007/s10043-018-0443-2
[38] A. Tavousi and M.A. Mansouri-Birjandi, Optical-analog-to-digital conversion based on successive-like approximations in octagonal-shape photonic crystal ring resonators, Superlattices Microstruct. 114 (2018) 23-31.
Available: https://www.sciencedirect.com/science/article/pii/S0749603617323273?via%3Dihub
[39] F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi, A Novel Proposal for All Optical Analog-to-Digital Converter Based on Photonic Crystal Structures, IEEE Photonics J., 9 (2) (2017) 1-11.
Available: https://ieeexplore.ieee.org/document/7891002
[40] F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi, Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure, Appl. Opt., 56 (7) (2017) 1799–1806.
Available: https://www.osapublishing.org/ao/abstract.cfm?uri=ao-56-7-1799
[41] V. Fakouri-Farid and A. Andalib, Design and simulation of an all optical photonic crystal-based comparator, Opt. - Int. J. Light Electron Opt., 172 (2018) 241–248.
Available: https://www.sciencedirect.com/science/article/pii/S0030402618309203?via%3Dihub
[42] S. Rathi, S. Swarnakar, and S. Kumar, Design of one-bit magnitude
comparator using photonic crystals, published online (2018).
Available: https://doi.org/10.1515/joc-2017-0084
[43] M. Danaie and H. Kaatuzian, Design of a photonic crystal differential phase comparator for a Mach–Zehnder switch, J. Opt., 13 (1) (2011) 015504. Available:https://iopscience.iop.org/article/10.1088/2040-8978/13/1/015504/meta
[44] B. Youssefi, M.K. Moravvej-Farshi, and N. Granpayeh, Two bit all-optical analog-to-digital converter based on nonlinear Kerr effect in 2D photonic crystals, Opt. Commun., 285 (13-14) (2012) 3228–3233.
Available: https://www.sciencedirect.com/science/article/pii/S0030401812002349?via%3Dihub