Ultra-fast 1-bit comparator using nonlinear photonic crystalbased ring resonators

Document Type : Articles

Authors

Department of Electrical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

In this paper, a photonic crystal structure for comparing two bits has been
proposed. This structure includes four resonant rings and some nonlinear rods. The
nonlinear rods used inside the resonant rings were made of a doped glass whose linear
and nonlinear refractive indices are 1.4 and 10-14 m2/W, respectively. Using Kerr effect,
optical waves are guided toward the correct output ports. In this study, plane wave
expansion and finite difference time domain methods were used for calculation of
photonic bandgap and simulation of optical wave propagation, respectively. The size of
the proposed structure is 1585 μm2 which is more compact than the previous works.
Furthermore, the obtained maximum delay time is about 2 ps that is proper to highspeed
processing. The normalized output power margins for logic 0 and 1 are calculated
as 25% and 71%, respectively. According to the obtained results, this structure can be
used for optical integrated circuits.

Keywords


[1] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Two dimensional photonic crystals, in Photonic Crystals: Molding the Flow of Light, 2ed ed., Princeton University Press, 2008, 66-93.
Available:
https://www.amazon.com/Photonic-Crystals-Molding-Light-Second/dp/0691124566
[2] M. Noori, M. Soroosh, and H. Baghban, All-angle self-collimation in two-dimensional square array photonic crystals based on index contrast tailoring, Opt. Eng. 54 (3) (2015) 037111. Available:
http://spie.org/Publications/Journal/10.1117/1.OE.54.3.037111?SSO=1
[3] M. Noori, M. Soroosh, and H. Baghban, Highly efficient self-collimation based waveguide for Mid-IR applications, Photonics Nanostructures - Fundam. Appl., 19 (2016) 1-11.
Available: https://www.sciencedirect.com/science/article/pii/S1569441016000067?via%3Dihub
[4] A. Tavousi, M.A. Mansouri-Birjandi, M. Ghadrdan, and M. Ranjbar-Torkamani, Application of photonic crystal ring resonator nonlinear response for full-optical tunable add--drop filtering, Photonics Netw. Commun., 34 (1) (2017) 131–139.
Available: https://www.springerprofessional.de/en/application-of-photonic-crystal-ring-resonator-nonlinear-respons/11939586
[5] M.A. Mansouri-Birjandi, A. Tavousi, M. Ghadrdan, Full-optical tunable add/drop filter based on nonlinear photonic crystal ring resonators, Photonics Nanostructures - Fundam. Appl., 21 (2016) 44–51.
Available: https://www.sciencedirect.com/science/article/pii/S1569441016300268?via%3Dihub
[6] Y. Wang, D. Chen, G. Zhang, J. Wang, and S. Tao, A super narrow band filter based on silicon 2D photonic crystal resonator and reflectors, Opt. Commun., 363 (2016) 13–20.
Available:
https://www.sciencedirect.com/science/article/pii/S0030401815302558?via%3Dihub
[7] A. Shaverdi, M. Soroosh, and E. Namjoo, Quality Factor Enhancement of Optical Channel Drop Filters Based on Photonic Crystal Ring Resonators, International J. Opt. Photon., 12 (2) (2018) 129-136.
Available: http://ijop.ir/article-1-317-en.html
[8] G. Moloudian, R. Sabbaghi-Nadooshan, and M. Hassangholizadeh-Kashtiban, Design of all-optical tunable filter based on two-dimensional photonic crystals for WDM (wave division multiplexing) applications, J. Chinese Inst. Eng., 39 (8) (2016) 971–976.
Available: https://www.tandfonline.com/doi/abs/10.1080/02533839.2016.1215937
[9] V. Fallahi and M. Seifouri, Novel structure of optical add/drop filters and multi-channel filter based on photonic crystal for using in optical
telecommunication devices, J. Optoelectron. Nano Struc., 4 (2) (2019) 53-68. Available: http://jopn.miau.ac.ir/article_3478.html
[10] V. Fallahi and M. Seifouri, Novel Four-Channel All Optical Demultiplexer Based on Square PhCRR for Using WDM Applications, J. Optoelectron. Nano Struc., 3 (4) (2018) 59-70. Available: http://jopn.miau.ac.ir/article_3262.html
[11] Z. Zare, A. Gharaati, Investigation of thermal tunable nano metallic photonic crystal filter with mirror symmetry, J. Optoelectron. Nano Struc., 3 (3) (2018) 27-36. Available: jopn.miau.ac.ir/article_3043.html
[12] E. Rafiee and F. Emami, Design and Analysis of a Novel Hexagonal Shaped Channel Drop Filter Based on Two-Dimensional Photonic Crystals, J. Optoelectron. Nano Struc., 1 (2) (2016) 39-46.
Available: http://jopn.miau.ac.ir/article_2047.html
[13] Z. Rashki and S. J. S. Mahdavi Chabok, Novel Design for Photonic Crystal Ring Resonators Based Optical Channel Drop Filter, 6 (3) (2018) 59-78. Available: jopn.miau.ac.ir/article_3046.html
[14] R. Talebzadeh, M. Soroosh, and F. Mehdizadeh, Improved low channel spacing high quality factor four-channel demultiplexer based on photonic crystal ring resonators, Opt. Appl. 46 (4) (2016) 553–564.
Available: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-4a7c932c-b3e2-441e-a990-aa4d29e64e96
[15] R. Talebzadeh, M. Soroosh, and T. Daghooghi, A 4-Channel Demultiplexer Based on 2D Photonic Crystal Using Line Defect Resonant Cavity, IETE J. Res. 62 (6) (2016) 866–872.
Available: https://www.tandfonline.com/doi/full/10.1080/03772063.2016.1217175
[16] R. Talebzadeh, M. Soroosh, Y.S. Kavian, and F. Mehdizadeh, Eight-channel all-optical demultiplexer based on photonic crystal resonant cavities, Opt. - Int. J. Light Electron Opt., 140 (2017) 331–337.
Available: https://www.sciencedirect.com/science/article/pii/S0030402617304795?via%3Dihub
[17] V. Kannaiyan, R. Savarimuthu, and S.K. Dhamodharan, Investigation of 2D-photonic crystal resonant cavity based WDM demultiplexer, Opto-Electronics Rev. 26 (2) (2018) 108–115.
Available: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-bd0a9f9b-0e20-49be-b2a1-16a8f4547998
[18] A. Abolhaasani-Kaleibar and A. Andalib, Studying Photonics Crystal
Cavities by Design and Simulation of a 1 to 8 Optical Demultiplexer, Frequenz., 72 (9-10) (2018) 459-464.
Available: https://www.degruyter.com/view/j/freq.ahead-of-print/freq-2017-0189/freq-2017-0189.xml
[19] F. Mehdizadeh and M. Soroosh, Designing of all optical NOR gate based on photonic crystal, Indian J. Pure Appl. Phys., 54 (1) (2016) 35–39.
Available: http://op.niscair.res.in/index.php/IJPAP/article/view/5678
[20] H. Alipour-Banaei, S. Serajmohammadi, and F. Mehdizadeh, All optical NAND gate based on nonlinear photonic crystal ring resonators, Opt. - Int. J. Light Electron Opt. 130 (2017) 1214-1221.
Available: https://www.sciencedirect.com/science/article/pii/S0030402616315261
[21] T.A. Moniem, All-optical XNOR gate based on 2D photonic-crystal ring resonators, Quantum Electron. 47 (2) (2017) 169.
Available: https://iopscience.iop.org/article/10.1070/QEL16279/meta
[22] N.F.F. Areed, A. El Fakharany, M.F.O. Hameed, and S.S.A. Obayya, Controlled optical photonic crystal AND gate using nematic liquid crystal layers, Opt. Quantum Electron. 49 (10) (2017) 45-52.
Available:https://www.springerprofessional.de/en/controlled-optical-photonic-crystal-and-gate-using-nematic-liqui/11983912
[23] H. Sharifi, S.M. Hamidi, and K. Navi, All-optical photonic crystal logic gates using nonlinear directional coupler, Photonics Nanostructures - Fundam. Appl. 27 (2017) 55-63.
Available: https://www.sciencedirect.com/science/article/pii/S1569441017301049?via%3Dihub
[24] T. Daghooghi, M. Soroosh, and K. Ansari-Asl, A novel proposal for all-optical decoder based on photonic crystals, Photonic Netw. Commun. 35 (3) (2018) 335-341.
Available: https://link.springer.com/article/10.1007/s11107-017-0746-4
[25] T. Daghooghi, M. Soroosh, and K. Ansari-Asl, Ultra-fast all-optical decoder based on nonlinear photonic crystal ring resonators, Appl. Opt. 57 (9) (2018) 2250–2257.
Available: https://www.osapublishing.org/ao/abstract.cfm?uri=ao-57-9-2250
[26] F. Mehdizadeh, H. Alipour-Banaei, and S. Serajmohammadi, Design and simulation of all optical decoder based on nonlinear PhCRRs, Opt. - Int. J. Light Electron Opt. 156 (2018) 701–706.
Available:
https://www.sciencedirect.com/science/article/pii/S003040261731639X?via%3Dihub
[27] S. Khosravi and M. Zavvari, Design and analysis of integrated all-optical 2 × 4 decoder based on 2D photonic crystals, Photonic Netw. Commun. 35 (1) (2018) 122-128.
Available: https://link.springer.com/article/10.1007%2Fs11107-017-0724-x
[28] F. Mehdizadeh, M. Soroosh, and H. Alipour-Banaei, Proposal for 4-to-2 optical encoder based on photonic crystals, IET Optoelectron., 11 (1) (2017) 29–35. Available: https://ieeexplore.ieee.org/document/7814409
[29] H. Alipour-Banaei, M.G. Rabati, P. Abdollahzadeh-Badelbou, and F. Mehdizadeh, Application of self-collimated beams to realization of all optical photonic crystal encoder, Phys. E Low-Dimensional Syst. Nanostructures., 75 (2016) 77–85.
Available: https://www.sciencedirect.com/science/article/pii/S1386947715301545?via%3Dihub
[30] T.A. Moniem, All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators, J. Mod. Opt., 63 (8) (2016) 735-741.
Available: https://www.tandfonline.com/doi/abs/10.1080/09500340.2015.1094580
[31] M. Hassangholizadeh-Kashtiban, R. Sabbaghi-Nadooshan, and H. Alipour-Banaei, A novel all optical reversible 4×2 encoder based on photonic crystals, Opt. - Int. J. Light Electron Opt., 126 (20) (2015) 2368–2372.
Available: https://linkinghub.elsevier.com/retrieve/pii/S0030402615004593
[32] S. Serajmohammadi, H. Alipour-Banaei, and F. Mehdizadeh, Proposal for realizing an all-optical half adder based on photonic crystals, Appl. Opt. 57 (7) (2018) 1617–1621.
Available: https://www.osapublishing.org/ao/abstract.cfm?uri=ao-57-7-1617
[33] A. Rahmani and F. Mehdizadeh, Application of nonlinear PhCRRs in realizing all optical half-adder, Opt. Quantum Electron. 50 (1), (2018) 30-36.
Available: https://www.springerprofessional.de/en/application-of-nonlinear-phcrrs-in-realizing-all-optical-half-ad/15333614
[34] M. Neisy, M. Soroosh, and K. Ansari-Asl, All optical half adder based on photonic crystal resonant cavities, Photonic Netw. Commun. 35 (2) (2018) 245-250.
Available: https://link.springer.com/article/10.1007%2Fs11107-017-0736-6
[35] F. Cheraghi, M. Soroosh, and G. Akbarizadeh, An ultra-compact all optical full adder based on nonlinear photonic crystal resonant cavities, Superlattices Microstruct., 113 (2018) 359-365.
Available: https://www.sciencedirect.com/science/article/pii/S0749603617322826?via%3Dihub
[36] M.R. Jalali-Azizpoor, M. Soroosh, and Y. Seifi-Kavian, Application of self-collimated beams in realizing all-optical photonic crystal-based half-adder, Photonic Netw. Commun., 36 (3) (2018) 344-349.
Available:https://www.springerprofessional.de/en/application-of-self-collimated-beams-in-realizing-all-optical-ph/15953808
[37] S.S. Zamanian-Dehkordi, M. Soroosh, and G. Akbarizadeh, An ultra-fast all-optical RS flip-flop based on nonlinear photonic crystal structures, Opt. Rev. 25 (4) (2018) 523-531.
Available: https://www.readcube.com/articles/10.1007/s10043-018-0443-2
[38] A. Tavousi and M.A. Mansouri-Birjandi, Optical-analog-to-digital conversion based on successive-like approximations in octagonal-shape photonic crystal ring resonators, Superlattices Microstruct. 114 (2018) 23-31.
Available: https://www.sciencedirect.com/science/article/pii/S0749603617323273?via%3Dihub
[39] F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi, A Novel Proposal for All Optical Analog-to-Digital Converter Based on Photonic Crystal Structures, IEEE Photonics J., 9 (2) (2017) 1-11.
Available: https://ieeexplore.ieee.org/document/7891002
[40] F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi, Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure, Appl. Opt., 56 (7) (2017) 1799–1806.
Available: https://www.osapublishing.org/ao/abstract.cfm?uri=ao-56-7-1799
[41] V. Fakouri-Farid and A. Andalib, Design and simulation of an all optical photonic crystal-based comparator, Opt. - Int. J. Light Electron Opt., 172 (2018) 241–248.
Available: https://www.sciencedirect.com/science/article/pii/S0030402618309203?via%3Dihub
[42] S. Rathi, S. Swarnakar, and S. Kumar, Design of one-bit magnitude
comparator using photonic crystals, published online (2018).
Available: https://doi.org/10.1515/joc-2017-0084
[43] M. Danaie and H. Kaatuzian, Design of a photonic crystal differential phase comparator for a Mach–Zehnder switch, J. Opt., 13 (1) (2011) 015504. Available:https://iopscience.iop.org/article/10.1088/2040-8978/13/1/015504/meta
[44] B. Youssefi, M.K. Moravvej-Farshi, and N. Granpayeh, Two bit all-optical analog-to-digital converter based on nonlinear Kerr effect in 2D photonic crystals, Opt. Commun., 285 (13-14) (2012) 3228–3233.
Available: https://www.sciencedirect.com/science/article/pii/S0030401812002349?via%3Dihub