[1] D. Lizzit, P. Palestri, D. Esseni, A. Revelant, L. Selmi. Analysis of the
Performance of n-Type FinFETs with Strained SiGe Channel. IEEE
Transaction on Electron Devices, 60(6) (2013) 1884-1891. available:
https://ieeexplore.ieee.org/document/6515165
[2] R. Hosseini, M. Fathipour, R. Faez. A comparative study of NEGF and
DDMS models in the GAA silicon nanowire transistor. International Journal
of Electronics. 99(9) (2012) 1299–1307. available:
https://www.tandfonline.com/doi/abs/10.1080/00207217.2012.669709
[3] Ch. Lee, I. Ferain, A. Afzalian, R. Yan, N. Dehdashti, P. Razavi, J. Colinge,
Performance estimation of junctionless multigate transistors, Solid-State
Electronics. 54(2) (2010) 97–103. Available:
https://www.sciencedirect.com/science/article/pii/S0038110109003463
[4] K. Pourchitsaz, M. R. Shayesteh, Self-heating effect modeling of a carbon
nanotube-based fieldeffect transistor (CNTFET), Journal of
Optoelectronical Nanostructures. 4(1) (2019) 51-66. Available:
http://jopn.miau.ac.ir/article_3385.html
[5] M. Akbari Eshkalak, R. Faez, A Computational Study on the Performance
of Graphene Nanoribbon Field Effect Transistor, Journal of
Optoelectronical Nanostructures, 2(3) (2017) 1-12.Available:
http://jopn.miau.ac.ir/article_2427.html
[6] M. Nayeri, P. Keshavarzian, M. Nayeri, A Novel Design of Penternary
Inverter Gate Based on Carbon Nano Tube, Journal of Optoelectronical
Nanostructures, 3(1) (2018) 15-26. Available:
http://jopn.miau.ac.ir/article_2820.html
[7] A. Rezaei, B. Azizollah-Ganji, M. Gholipour, Effects of the Channel
Length on the Nanoscale Field Effect Diode Performance, Journal of
Optoelectronical Nanostructures, 3(2) (2018), 29-40. Available:
http://jopn.miau.ac.ir/article_2862.html
[8] P. Bal, B. Ghosh, P. Mondal, M. Akram, B. Mukund, M. Tripathi. Dual
material gate junctionless tunnel field effect transistor. Journal of
Computational Electronic, 13(1) (2014) 230–234. Available:
https://link.springer.com/article/10.1007/s10825-013-0505-4
[9] M. Raushan, N. Alam, M. Siddiqui. Performance Enhancement of
Junctionless Tunnel Field Effect Transistor Using Dual-k Spacers. Journal
of Nanoelectronics and Optoelectronics, 13(6) (2018) 1–9. Available:
https://www.ingentaconnect.com/contentone/asp/jno/2018/00000013/00000
006/art00016
[10] D. Xiao, X. Wang, Y. Yu, J. Chen, M. Zhang, Z. Xue, J. Luo, TCAD study
on gate-all-around cylindrical (GAAC) transistor for CMOS scaling to the
end of the roadmap. Microelectronic Journal, 40(12) (2009) 1766–1771.
Available:
https://www.sciencedirect.com/science/article/abs/pii/S0026269209001815
[11] M. Cheralathan, A. Cerdeira, B. Iniguez, Compact model for long-channel
cylindrical surrounding-gate MOSFETs valid from low to high doping
concentrations. Solid-State Electronics. 55(1) (2011)13–18. Available:
https://www.sciencedirect.com/science/article/pii/S0038110110003266
[12] R. Hosseini, M. Fathipour, R. Faez. Quantum simulation study of gate-allaround
(GAA) silicon nanowire transistor and double gate metal oxide
semiconductor field effect transistor (DG MOSFET). International Journal
of the Physical Sciences, 7(28) (2012) 5054-5061. Available:
https://academicjournals.org/journal/IJPS/article-abstract/B27116C16368
[13] M. Rahimian, M. Fathipour. Junctionless nanowire TFET with built-in NP-
N bipolar action: Physics and operational principle. Journal of Applied
Physics, 120(22) (2016) 225702. Available:
https://aip.scitation.org/doi/abs/10.1063/1.4971345?journalCode=jap
[14] M. Rahimian., M. Fathipour. Asymmetric junctionless nanowire TFET with
built-in n+ source pocket emphasizing on energy band modification.
Journal of Computational Electronics. 15(4) (2016) 1297-1307. Available:
https://link.springer.com/article/10.1007%2Fs10825-016-0895-1
A. Verhulst, W. Vandenberghe, K. Maex, G. Groeseneken. Boosting the
on-current of a n-channel nanowire tunnel field-effect transistor by source
material optimization. Journal of Applied Physics, 104(6) (2008) 064514.
Available: https://aip.scitation.org/doi/10.1063/1.2981088
[15] S. Marjani, S. E. Hosseini, R. Faez. A 3D analytical modeling of tri-gate
tunneling field-effect transistors. Journal of Computational Electronics.
15(3)(2016) 820–830.
Available: https://link.springer.com/article/10.1007/s10825-016-0843-0
[16] R. Molaei Imen Abadi, S. A. Sedigh Ziabari. Representation of type I
heterostructure junctionless tunnel field effect transistor for highperformance
logic application. Applied Physics A. 122 (2016) 616.
Available:
https://link.springer.com/article/10.1007/s00339-016-0151-3
[17] E. Kurniawan, Sh. Yang, V. Thirunavukkarasu, Y. Wu. Analysis of Ge-Si
Heterojunction Nanowire Tunnel FET: Impact of Tunneling Window of
Band-to-Band Tunneling Model. Journal of The Electrochemical Society.
164 (11) (2017) E3354-E3358.
Available: http://jes.ecsdl.org/content/164/11/E3354.abstract
[18] J. Huang, P. Long, M. Povolotskyi, H. Ilatikhameneh, T. Ameen, R.
Rahman, R. Rodwell, G. Klimeck. A Multiscale Modeling of Triple-
Heterojunction Tunneling FETs. IEEE Transaction on Electron Devices.
64(6) (2017) 2728-2735.
Available: https://ieeexplore.ieee.org/document/7898786
[19] R. Molaei Imen Abadi, S. A. Sedigh Ziabari. Representation of strained
gate-all around junctionless tunneling nanowire filed effect transistor for
analog applications. Microelectronic Engineering. 162 (2016) 12–16.
https://www.sciencedirect.com/science/article/abs/pii/S0167931716302179
[20] Q. Zhao, S. Richter, Ch. Schulte-Braucks, L. Knoll, S. Blaeser, G. Luong,
S. Trellenkamp, A. Schafer, A. Tiedemann, J. Hartmann, K. Bourdelle, S.
Mantl. Strained Si and SiGe Nanowire Tunnel FETs for Logic and Analog
Applications. IEEE Journal of the Electron Devices Society. 3(3)
(2015)103-114.
Available: https://ieeexplore.ieee.org/abstract/document/7031858/
[21] Silvaco Int.: ATLAS User’s Manual, Device simulation Software, Silvaco
International, Santa Clara (2016)
[22] A. Schenk. Finite-temperature full random-phase approximation model of
band-gap narrowing for silicon device simulation. Journal of Applied
Physics, 84(7) (1998) 3684- 3694.
Available: https://aip.scitation.org/doi/10.1063/1.368545
[23] A. Richter, S.W. Glunz, F. Werner, J. Schmidt, A. Cuevas. Improved
quantitative description of Auger Recombination in crystalline silicon,
Physical Review B, 86(2012) 165202.
Available:
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.86.165202
[24] W. Shockley, W. Read. Statistics of the Recombination of Holes and
Electrons. Physical Review. 87(1952) 835-842.
Available: https://journals.aps.org/pr/abstract/10.1103/PhysRev.87.835
[25] R. N. Hall. Electron Hole Recombination in Germanium. Physical Review.
87(1952) 387.
Available: https://journals.aps.org/pr/abstract/10.1103/PhysRev.87.387
[26] M. G. Bardon, H. P. Neves, R. Puers, Ch. V. Hoof. Pseudo twodimensional
model for double-gate tunnel FETs considering the junctions
depletion regions. IEEE Transaction on Electron Devices. 57(4) (2010)
827–834.
Available: https://ieeexplore.ieee.org/document/5415671
[27] E. Kane. Theory of tunneling. Journal of Applied Physics. 32(1) (1961)
83–91.
Available: https://aip.scitation.org/doi/10.1063/1.1735965
[28] E. Kane. Zener tunneling in semiconductors. Journal of Physics and
Chemistry of Solids. 12(2) (1961)181–188. Available:
https://www.sciencedirect.com/science/article/abs/pii/0022369760900354
Performance Study and Analysis of Heterojunction Gate All Around Nanowire … * 27
[29] N. Bagga, S. Dasgupta. Surface Potential and Drain Current Analytical
Model of Gate All Around Triple Metal TFET. IEEE Transaction on
Electron Devices. 64 (2)(2017) 606 – 613.
Available: https://ieeexplore.ieee.org/document/7807255
[30] H. Kao, A. Verhulst, W. Vandenberghe, B. Soree, B. Groeseneken, K.
Meyer. Direct and Indirect Band-to-band Tunneling in Germanium-based
TFETs. IEEE Transaction on Electron Devices. 59(2) (2012) 292–30.
Available: https://ieeexplore.ieee.org/abstract/document/6096396/