Enhancement of the Magneto-Optical Kerr Effect in One- Dimensional Magnetophotonic Crystals with Adjustable Spatial Configuration

Document Type : Articles

Authors

1 Physics Department, Persian Gulf University, Bushehr, Iran

2 Physics Department, Payame Noor University, Tehran, Iran

Abstract

We studied magnetophotonic crystals (MPCs) with introduced magnetic
defect layer sandwiched between magnetic and dielectric Bragg mirrors. These
magnetophotonic crystals have excellent capabilities to enhance reflection and Kerr
rotation simultaneously. By adjusting spatial configuration such as repetition numbers
of Bragg mirrors and thickness of magnetic defect layer, we achieved the Kerr rotation
angles more than 75˚ and reflection very close to 1. We briefly described the
formulation of finite element method (FEM) and transfer matrix method (TMM). The
electric field distribution and magnitude of it along the MPCs are simulated using FEM.
Using the TMM, we calculated the MO responses of MPCs. With light localization
inside the magnetic defect layer and multiple reflections in it, the magneto-optical (MO)
responses of these MPCs were significantly increased. The studied structures in this
research have high MO responses that make it suitable for designing MO elements in
highly sensitive devices and optical telecommunication tools.

Keywords


[1] A. A. Fedyanin, O. A. Aktsipetrov, D. Kobayashi, K. Nishimura, H. Uchida
and M. Inoue, Enhanced Faraday and nonlinear magneto-optical Kerr
effects in magnetophotonic crystals, J. Magn. Magn. Mater. 282 (2004) 256-
259.
[2] K. Sakoda, Optical Properties of Photonic Crystals, 2nd Edition, Springer.
New York, USA, 2004.
[3] J. D. Joannopoulos, S. G. Johnson, J. N. Winn and R. D. Meade, Photonic
Crystals:Molding the Flow of Light, Princeton University Press, 2nd edition.
New Jersey, USA, 2008.
[4] Z. Zare and A. Gharaati, Investigation of thermal tunable nano metallic
photonic crystal filter with mirror symmetry, JOPN. 3 (3) (2018) 27-36.
[5] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and
electronics, Phys. Rev. Lett. 58 (20) (1987) 2059-2062.
[6] S. John, Strong localization of photons in certain disordered dielectric
superlattices, Phys. Rev. Lett. 58 (23) (1987) 2486-2489.
[7] J. C. Knight, J. Broeng, T. A. Birks and P. St. J. Russell, Photonic Band Gap
Guidance in Optical Fibers, Science. 282 (5393) (1998) 1476-1478.
[8] Z. Wu, K. Xie and H. Yang, Band gap properties of two-dimensional
photonic crystals with rhombic lattice, Optik. 123 (6) (2012) 534-536.
[9] Y. A. Vlasov, X. Bo, J. C. Sturm and D. J. Norris, On-chip natural assembly
of silicon photonic bandgap crystals. Nature. 414 (2001) 289-293.
[10] M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Rishede,
H. E. Engan and A. Bjarklev, Electrically tunable photonic bandgap
guidance in a liquid-crystal filled photonic crystal fiber, IEEE Photon.
Tech. Lett. 17 (4) (2005) 819-821.
[11] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus
and I. Kim, Two-Dimensional Photonic Band-Gap Defect Mode Laser, Science. 284 (5421) (1999) 1819-1821.
[12] Y. Kubota, M. Taguchi, H. Akai, Sh. Yamamoto, T. Someya, Y. Hirata, K. Takubo, M. Araki, M. Fujisawa, K. Yamamoto, Y. Yokoyama, S. Yamamoto, M. Tsunoda, H. Wadati, S. Shin and I. Matsuda, L-edge resonant magneto-optical Kerr effect of a buried Fe nanofilm, Phys. Rev. B. 96 (13) (2017) 134432.
[13] T. Haider, A Review of Magneto-Optic Effects and Its Application, Int, J. Electromag, Appl. 7 (2017) 17-24.
[14] R. Abdi-Ghaleh and A. Namdar, Circular polarization bandpass filters based on one-dimensional magnetophotonic crystals, J. Mod. Opt. 60 (19) (2013) 1619-1626.
[15] M. Inoue, M. Levy and A. V. Baryshev, Magnetophotonics: From theory to applications, Springer, Berlin, Germany, 2013.
[16] V. I. Belotelov and A. K. Zvezdin, Magneto-optical properties of photonic crystals, J. Opt. Soc. Amer. 22 (1) (2005) 286-292.
[17] R. Abdi-Ghaleh and M. Asad, Design of one-dimensional magnetophotonic crystals operating at visible wavelengths, Eur. Phys. J. D. 69 (13) (2015) 1-7.
[18] A. K. Zvezdin and V. I. Belotelov, Magnetooptical properties of two dimensional photonic crystals, Eur. Phys. J. B. 37 (4) (2004) 479-487.
[19] W. K. Tse and A. H. MacDonald, Giant Magneto-optical Kerr Effect and Universal Faraday Effect in Thin-Film Topological Insulators, Phys. Rev. Lett. 105 (5) (2010) 057401.
[20] G. M. Choi, Magneto-Optical Kerr Effect Driven by Spin Accumulation on Cu, Au, and Pt, Appl. Sci. 8 (8) (2018) 1378.
[21] S. Kumari and S. Chakraborty, Study of different magneto-optic materials for current sensing applications, J. Sens. Sens. Syst. 7 (2018) 421-431.
[22] M. Inoue, K. I. Arai, T. Fujii and M. Abe, One-dimensional magnetophotonic crystals, J. App. Phys. 85 (8) (1999) 5768-5770.
[23] K. J. Vahala, Optical microcavities, Nature. 424 (2003) 839-846.
[24] N. E. Khokhlov, A. R. Prokopov, A. N. Shaposhnikov, V. N. Berzhansky, M. A. Kozhaev, S. N. Andreev, A. P. Ravishankar, V. G. Achanta, D. A. Bykov, A. K. Zvezdin and V. I. Belotelov, Photonic crystals with
plasmonic patterns: novel type of the heterostructures for enhanced magneto-optical activity, J. Phys. D: Appl. Phys. 48 (9) (2015).
[25] A. L. Chekhov, V. L. Krutyanskiy, A. N. Shaimanov, A. I. Stognij and T. V. Murzina, Wide tunability of magnetoplasmonic crystals due to excitation of multiple waveguide and plasmon modes, Opt. Express. 22 (15) (2014) 17762-17768.
[26] M. Pohl, L. E. Kreilkamp, V. I. Belotelov, I. A. Akimov, A. N. Kalish, N. E. Khokhlov, V. J. Yallapragada, A. V. Gopal, M. NurE-Alam and M. Vasiliev, Tuning of the transverse magneto-optical Kerr effect in magneto-plasmonic crystals, New J. Phys. 15 (2013).
[27] C. Y. You and S. C. Shin, Generalized analytic formulae for magneto-optical Kerr effects, J. App. Phys. 84 (1) (1998) 541-546.
[28] I. Abdulhalim, Analytic propagation matrix method for anisotropic magneto-optic layered media, J. Opt. A: Pure. Appl. Opt. 2 (6) (2000) 557-564.
[29] A. K. Zvezdin and V. A. Kotov, Modern magnetooptics and magnetooptical materials, IOP Publishing Ltd, Bristol and Philadelphia, 1997.
[30] M. Mansuripur, The physical principles of magneto-optical recording, Cambridge University Press, New York, USA, 1995.
[31] Y. A. Uspenskii, E. T. Kulatov and S. V. Halilov, Effect of anisotropy on magneto-optical properties of uniaxial crystals: Application to CrO2, Phys. Rev. B. 54 (1) (1996) 474-481.
[32] T. Kaihara, T. Ando, H. Shimizu, V. Zayets, H. Saito, K. Ando and S. Yuasa, Enhancement of magneto-optical Kerr effect by surface plasmons in trilayer structure consisting of double-layer dielectrics and ferromagnetic metal, OSA. Opt. Express. 23 (9) (2015) 11537-11555.
[33] C. Dehesa-Martinez, L. Blanko-Gutierrez, M. Velez, J. Diaz, L. M. Alvarez-Prado and J. M. Alameda, Magneto-optical transverse Kerr effect in multilayers, Phys. Rev. B. 64 (2) (2001) 024417.
[34] J. Zak, E. R. Moog, C. Liu and S. D. Bader, Fundamental magnetooptics, J. Appl. Phys. 68 (8) (1990).
[35] M. Zamani, M. Ghanaatshoar and H. Alisafaee, Compact one-dimensional magnetophotonic crystals with simultaneous large Faraday rotation and high transmittance, J. Mod. Opt. 59 (2) (2012) 126-130.
[36] W. Reim and D. Weller, Kerr rotation enhancement in metallic bilayer thin films for magnetooptical recording, App. Phys. Lett. 53 (24) (1988) 2453-2457.
[37] J. Bastos and N. Sadowski , Electromagnetic Modeling by Finite Element Method, CRC Press, Boca Raton, USA, 2003.
[38] E. Jesenska, T. Yoshida, K. Shinozaki, T. Ishibashi, L. Beran, M. Zahradnik, R. Antos, M. Kučera and M. Veis, Optical and magneto-optical properties of Bi substituted yttrium iron garnets prepared by metal organic decomposition, Opt. Soc. Amer. 6 (6) (2016) 261138.
[39] S. Yamamoto and I. Matsuda, Measurement of the Resonant Magneto-Optical Kerr Effect Using a Free Electron Laser, Appl. Sci. 7 (7) (2017) 662-1-23.
[40] E. Lage, L. Beran, A. U. Quindeau, L. Ohnoutek, M. Kucera, R. Antos, S. R. Sani, G. F. Dionne, M. Veis and C. A. Ross, Temperature-dependent Faraday rotation and magnetization reorientation in cerium-substituted yttrium iron garnet thin films, APL. MATERIALS. 5 (2017) 036104-1-7.
[41] M. Barthelemy, M. Vomir, M. Sanches Piaia, H. Vonesch, P. Molho, B. Barbara, and J. Y. Bigot, Magneto-optical four-wave mixing transients in garnets, Opt. Soc. Amer: Optica. 4 (1) (2017) 60-63.
[42] C. Tang, M. Aldosary, Z. Jiang, H. Chang, B. Madon, K. Chan, M. Wu, J. E. Garay and J. Shi, Exquisite growth control and magnetic properties of yttrium iron garnet thin films, Appl. Phys. Lett. 108 (10) (2016) 102403-1-17.
[43] M. Levy, H. C. Yang, M. J. Steel and J. Fujita, Flat-Top Response in One-Dimensional Magnetic Photonic Bandgap Structures With Faraday Rotation Enhancement, J. Lightwave. Technol. 19 (12) (2001) 1964-1969.