[1] L. Safaei, M. Hatami and M. B. Zarandi. Numerical Analysis of Stability for
Temporal Bright Solitons in a PT-Symmetric NLDC. J. Optoelectronical
Nanostructures. 2(3) (2017) 69-78.
Available: http://jopn.miau.ac.ir/article_2433.html
[2] D. Farina and S. V. Bulanov. Relativistic Electromagnetic Solitons in the
Electron-Ion Plasma. Phys. Rev. Lett. 86 (2001) 5289-5292.
Available: https://doi.org/10.1103/PhysRevLett.86.5289
[3] S. Chaudhuri and A R. Chowdhury. Nonlinear Landau damping in a relativistic electron-ion plasma–non-local nonlinear Schrödinger-equation and Krylov Bogoliubov Mitropolsky method. Phys. Scripta 93(7) (2018) 075601. Available: https://doi.org/10.1088/1402-4896/aac60d
[4] A. Keshavarz1 and Z. Abbasi. Spatial soliton pairs in an unbiased photovoltaic-photorefractive crystalcircuit. J. Optoelectronical Nanostructures. 1(1) (2016) 81-90.
Available: http://jopn.miau.ac.ir/article_1817.html
[5] M.J. Iqbal, H.A. Shah, W. Masood and N.L. Tsintsadze. Nonlinear ion acoustic waves in a relativistic degenerate plasma with Landau diamagnetism and electron trapping. Eur. Phys. J. D. 72(11) (2018) 192. Available: http://dx.doi.org/10.1140/epjd/e2018-90309-2
[6] L. Safaei, M. Hatami and M. B. Zarandi. Effect of Relative Phase on the Stability of Temporal Bright Solitons in a PT- Symmetric NLDC. J. Optoelectronical Nanostructures. 3(3) (2018) 37-46.
Available: http://jopn.miau.ac.ir/article_3044.html
[7] G. Sánchez-Arriaga, E. Siminos, V. Saxena and I. Kourakis. Relativistic breather-type solitary waves with linear polarization in cold plasmas. Phys. Rev. E. 94 (2016) 029903. Available:
DOI: 10.1103/PhysRevE.91.033102.
[8] N. Ratan, N. J. Sircombe, L. Ceurvorst, J. Sadler, M. F. Kasim, J. Holloway, M. C. Levy, R. Trines, R. Bingham and P. A. Norreys. Dense plasma heating by crossing relativistic electron beams. Phys. Rev. E. 95 (2017) 013211. Available: https://doi.org/10.1103/PhysRevE.95.013211
[9] Z. Zare and A. gharaati. Investigation of thermal tunable nano metallic photonic crystal filter with mirror symmetry. J. Optoelectronical Nanostructures. 3(3) (2018) 27-36.
Available: http://jopn.miau.ac.ir/article_3043.html
[10] E. Heidari, M. Aslaninejad and H. Eshraghi. Electron trapping in the electrosound solitary wave for propagation of high intensity laser in a relativistic plasma .Plasma Phys. Control. Fusion. 52 (2010) 075010. Available: https://doi.org/10.1088/0741-3335/52/7/075010
[11] G. Lehmann and K. H. Spatschek. Poincaré analysis of wave motion in ultrarelativistic electron-ion plasmas. Phys. Rev. E. 83 (2011) 036401. Available: https://doi.org/10.1103/PhysRevE.83.036401
[12] D. Lu, Z. L. Li and B. S. Xie. Effects of ion mobility and positron fraction on solitary waves in weak relativistic electron-positron-ion plasma. Phys. Rev. E. 88 (2013) 033109.
Available: https://doi.org/10.1103/PhysRevE.88.033109
[13] M. Lontano, S. V. Bulanov, M. Passoni and T. Tajima. A kinetic model for the one-dimensional electromagnetic solitons in an isothermal plasma. Phys. Plasmas. 9 (2002) 2562-2568.
Available: http://dx.doi.org/10.1063/1.1476307
[14] P. K. Shukla, M. Marklund and B. Eliasson. Nonlinear dynamics of intense laser pulses in a pair plasma. Phys. Lett. A. 324 (2004) 193.
Available: https://doi.org/10.1016/j.physleta.2004.02.065
[15] E. Heidari, M. Aslaninejad, H. Eshraghi and L. Rajaee. Standing electromagnetic solitons in hot ultra-relativistic electron-positron plasmas. Phys. Plasmas. 21 (2014) 032305.
Available: http://dx.doi.org/10.1063/1.4868729
[16] T. Tatsuno, M. Ohhashi, V. I. Berezhiani and S. V. Mikeladze. Self-guiding electromagnetic beams in relativistic electron–positron plasmas. Phys. Lett. A. 363 (2007) 225-231.
Available: https://doi.org/10.1016/j.physleta.2006.10.096
[17] C. S. Jao and L. N. Hau. Electrostatic solitons and Alfvén waves generated by streaming instability in electron-positron plasmas. Phys. Rev. E. 98 (2018) 013203.
Available: https://doi.org/10.1103/PhysRevE.98.013203
[18] B. Eliasson and P. K. Shukla. Kinetic effects on relativistic solitons in plasmas. Phys. Lett. A. 354 (2006) 453-456.
Available: https://doi.org/1016/j.physleta.2006.01.083