Improving Blue InGaN Laser Diodes Performance with Waveguide Structure Engineering

Document Type : Articles

Author

Department of Engineering Sciences, Faculty of Technology and Engineering East of Guilan, University of Guilan, Rudsar-Vajargah, Iran

Abstract

To enhance lasers’ power and improve their performance, a model was
applied for the waveguide design of 400 nm InGaN/InGaN semiconductor laser, which
is much easier to implement. The conventional and new laser structures were
theoretically investigated using simulation software PICS3D, which self-consistently
combines 3D simulation of carrier transport, self-heating, and optical waveguiding.
Excellent agreement between simulation and experimental results was obtained by
careful adjustment of the material parameter in the physical model. Numerical
simulation results demonstrate that the new waveguide structure can efficiently increase
the output power, lower the threshold current, and improve the slope efficiency, which
is simply applicable to any kind of InGaN edge emitting lasers. Flatten band gap in the
p-side of the InGaN laser diode in new laser structure resulted in an increase in the hole
current density in the quantum well while simultaneously the electron confinement in
the active region was effectively created, leading to the increased stimulated
recombination rate. Furthermore, optical mode-overlap with heavily p-doped was
declined, which is the main reason for a better performance of InGaN laser diode.

Keywords


[1] Y. Yang, Y. Zeng. Enhanced performance of InGaN light-emitting
diodes with InGaN/GaN superlattice and graded-composition InGaN/GaN
superlattice interlayers. Phys. Status Solidi A. 211 (7) (2014) 1640–1644.
[2] L. Cheng and S. Wu. Performance enhancement of blue InGaN lightemitting
diodes with a GaN AlGaN–GaN last barrier and without an AlGaN
electron blocking layer, IEEE Journal of Quantum Electronics. 50 (4)
(2014).
Improving Blue InGaN Laser Diodes Performance with Waveguide Structure Engineering * 23
[3] M. Alias, A. Al-Omari, F. Maskuriy, F. Faiz, and S. Mitan. Optimisation of
optical properties of a long-wavelength GaInNAs quantum-well laser diode.
Quantum Electronics. 43 (11) (2013).
[4] M. Gholampour, A. Abdollah-zadeh, L. Shekari, R. Poursalehi and M.
Soltanzadeh. Green Method for Synthesizing Gallium Nitride
Nanostructures at Low Temperature. Journal of Optoelectronical
Nanostructure. 3 (2018) 51-64.
[5] A. Paliwal, K. Singh and M. Mathew, Hole injection enhancement in
InGaN laser diodes, International Conference on Fiber Optics and
Photonics, IIT, New Delhi, India, (2018) Dec. 12-15.
[6] M. Mahbub Satter, Design and theoretical study of wurtzite III-N
deepultraviolet edge emitting laser diodes, Ph.D. Dissertation, Georgia
Institute of Technology (2014).
[7] B. C. Lin, K. J. Chen, C. H. Wang, C. H. Chiu, Y. P. Lan, C. C. Lin, P.
T. Lee, M. H. Shih, Y. K. Kuo, H.C. Kuo. Hole injection and electron
overflow improvement in InGaN/GaN light-emitting diodes by a tapered
AlGaN electron blocking layer. Optics Express. 22 (2014) 463.
[8] M. Tangi, P. Mishra, B. Janjua, A. Prabaswara, C. Zhao, D. Priante, J. W.
Min, T. Khee Ng, and B. S. Ooi. Role of quantum-confined stark effect on
bias dependent photoluminescence of N-polar GaN/InGaN multi-quantum
disk amber light emitting diodes. Journal of Applied Physics. 123 (2018)
105702.
[9] S. Zhu, J. Wang, J. Yan, Y. Zhang, Y. Pei, Z. Si and J. Li, Influence of
AlGaN electron blocking layer on modulation bandwidth of GaN-based
light emitting diodes. ECS Solid State Letters. 3 (2014) R11.
[10] A. X. Li, C. L. Mo, J. L. Zhang, X. L. Wang, X. M .Wu, G. X. Wang, F.
Y. Jiang. Effect of Mg-preflow for p-AlGaN electron blocking layer on the
electroluminescence of green LEDs with V-shaped pits. Chinese Physics
Letters. 3 (2018) 027301.
[11] Z. H. Zhang, S. W. Huang Chen, C. Chu, K. Tian, M. Fang, Y. Zhang, H.
C. Kuo. Nearly efficiency-droop-free AlGaN-based ultraviolet light-emitting
diodes with a specifically designed super lattice p-type electron blocking
layer for high Mg doping efficiency. Nanoscale Research Letters. 13 (2018)
1.
[12] T. Kolbe, A. Knauer, J. Rass, H. K. Cho, S. Hagedorn, S. Einfeldt, M.
Kneissl and M. Weyers. Effect of electron blocking layer doping and
composition on the performance of 310 nm light emitting diodes. Materials.
10 (2017) 1396.
[13] J. Piprek. Analysis of efficiency limitations in high-power InGaN/ GaN
laser diodes. Opt. Quant. Electron. 48 (2016) 471.
[14] N. Tetsuo, I. Nobuyuki, T. Kazuyoshi , K. Keita and K. Tetsu. Wide
range doping control and defect characterization of GaN layers with
various Mg concentrations. Journal of Applied Physics. 124 (2018) 165706.
[15] B. Zhu, Z. H. Zhang, S. T. Tan, S. Lu, Yi. Zhang, X. Kang, N. Wang,
N. Hasanov, H. V. Demir. Effect of Mg doping in the barriers on the
electrical performance of InGaN/GaN-based light-emitting diodes. Physica
E: Low-dimensional Systems and Nanostructures. 98 (2018) 29.
[16] P. Chen, C. H. Kuo, W. C. Lai, Y. A. Chen, L. Chang and S. Chang. GaNbased
light-emitting-diode with a p-InGaN layer. Journal of Display
Technology. 10 (3) (2014) 204-207.
[17] X. Li, D. Zhao, D. Jiang, P. Chen, Z. Liu, Ji. Zhu, M. Shi, D. Zhao and
W. Liu Suppression of electron leakage in 808 nm laser diodes with
asymmetric waveguide layer. Journal of Semiconductors. 37 (1) (2016)
014007.
[18] S. Nakamura. InGaN-based blue laser diodes. IEEE Journal of Selected
Topics in Quantum Electronics. 3 (3) (1997) 712-718.
[19] D. H. Hsieh, A. J. Tzou, T. S. Kao, F. I. Lai, D. W. Lin, B. C. Lin, T. C.
Lu, W. C. Lai, C. H. Chen and H. C. Kuo. Improved carrier injection in
GaN-based VCSEL via AlGaN/GaN multiple quantum barrier electron
blocking layer. Optics Express. 23 (2015) 27145.
[20] M. Xia, H. Ghafouri Shiraz. Analysis of carrier heating effects in
quantum well semiconductor optical amplifiers considering holes’ Nonparabolic
density of states. Optical and Quantum Electronics. 47 (7) (2015)
1847-1858.
[21] M. Re. Jalal and M. Habibi. Simulation of Direct Pumping of Quantum
Dots in a Quantum Dot Laser. Journal of Optoelectronical Nanostructure. 2
(2017) 61-69.
[22] M. Riahinasab and E. Darabi. Analytical Investigation of Frequency
Behavior in Tunnel Injection Quantum Dot VCSEL. Journal of
Optoelectronical Nanostructure. 3 (2018) 65-75
[23] H. Bahramiyan and S. Bagheri. Linear and nonlinear optical properties
of a modified Gaussian quantum dot: pressure, temperature and impurity
effect. Journal of Optoelectronical Nanostructure. 3 (2018) 79-99.
[24] J. Piprek. Internal power loss in GaN-based lasers: Mechanisms and
remedies. Opt. Quant. Electron. 49 (2017) 329.
[25] G. Kyritsis and N. Zakhleniuk. Self-consistent simulation model and
enhancement of wavelength tuning of InGaAsP/InP multisection DBR laser
diodes. IEEE Journal of Selected Topics in Quantum Electronics. 19 (5)
(2013).
[26] V. S. Volcheck, V. R. Stempitsky, Suppression of the self- heating effect
in GaN-HEMT by few layer graphene heat spreading elements. Journal of
Physics: Conf. Series. 917 (2017) 082015.
[27] Z. Danesh Kaftroudi, E. Rajaei and A. Mazandarani. Simulation of a
single-mode tunnel-junction-based long-wavelength VCSEL. Journal of
Russian Laser Research. 35 (2) (2014) 124-137.
[28] J. Piprek and S. Nakamura. Physics of high-power InGaN/GaN lasers.
IEE Proc.-Optoelectron. 149 (4) (2002) 145-151.
[29] T. Wang, J. Xu, X. Wang. Self-heating dependent characteristic of GaNbased
light-emitting diodes with and without AlGaInN electron blocking
layer. Chin. Sci. Bull. 59 (20) (2014) 2460–2469.
[30] S. Salimpour and H. Rasooli Sagha. Impressive Reduction of Dark
Current in InSb Infrared Photodetector to achieve High Temperature
Performance. Journal of Optoelectronical Nanostructure. 3 (2018) 81-95.
[31] L. A. M. Sulmon, Static and dynamic characteristics of InGaN-based laser
diodes, Phd Thesis, LASPE (2014).
[32] J. Piprek and Z. M. Li. Electroluminescent cooling mechanism in
InGaN/GaN light-emitting diodes. Opt. Quant. Electron. 48 (2016) 472.
[33] B. S. Ryvkin, E. A. Avrutin and J. T. Kostamovaara, Optical loss
suppression in long-wavelength semiconductor lasers at elevated
temperatures by high doping of the n-waveguide. Semicond. Sci. Technol.
33 (2018) 105010.