Absorption Spectra of a Graphene Embedded One Dimensional Fibonacci Aperiodic Structure

Document Type : Articles

Author

Department of Physics, Islamic Azad University, Shabestar Branch, Shabestar, Iran

Abstract

In this paper, we explore the linear response of one dimensional
quasiperiodic structure based on Fibonacci sequence composed of silicon dioxide,
polystyrene and graphene materials. Here, a graphene monolayer is sandwiched
between two adjacent layers. The numerical results are obtained by using the standard
transfer matrix method. Due to the presence of graphene sheet in each structure, in the
initial range of THz, an additional gap GPBG is induced which is absent in the case of
without graphene. The amplitude of absorption peaks at the upper edge of the GPBG
significantly enhances, when damping factor increases. The height of the absorption
peak at the GPBG edge goes up as the temperature increases. At the GPBG edge, with
increasing the thickness of graphene, the absorption peak rises and shifts to the lower
frequencies. Moreover, we have realized that the amplitude of absorption peaks at the
upper edge of the GPBG significantly enhance by increasing damping factor.

Keywords


[1] Z. Zare and A. Gharaat. Investigation of thermal tunable nano metallic photonic crystal filter with mirror. JOPN. [Online]. 3 (3) (2018, Summer) 27-36. Available: http://jopn.miau.ac.ir/article_3043.html.
[2] T. Froutan fard kobar olia1 and A. Vahedi. Temperature Tunability of Dielectric/ Liquid Crystal / Dielectric Photonic Crystal Structures. JOPN. [Online]. 2(4) (2017, Autumn) 57-70. Available: http://jopn.miau.ac.ir/article_2574.html.
[3] R. Talebzadeh and M. Bavaghar. Tunable Defect Mode in One-Dimensional Ternary Nanophotonic Crystal with Mirror Symmetry. JOPN. [Online]. 2(4) (2017, Autumn) 83-92. Available: http://jopn.miau.ac.ir/article_2576.html.
[4] K. Milanchian and Z. eyni. Analytical Investigation of TM Surface Waves in 1D Photonic Crystals Capped by a Self-Focusing Left-Handed Slab. JOPN. [Online]. 2(4) (2017, Autumn) 19-32. Available: http://jopn.miau.ac.ir/article_2571.html.
[5] N. Ansari and E. Mohebbi. Broadband and high absorption in Fibonacci photonic crystal including MoS2 monolayer in the visible range. J. Phys. D: Appl. Phys. [Online]. 51(11) (2018) 115342-115348. Available: http://iopscience.iop.org/article/10.1088/1361-6463/aaacbd/meta.
[6] E. Macia. Optical applications of Fibonacci dielectric multilayers. Ferroelectrics. [Online]. 250 (2001, March) 401-410. Available: https://www.tandfonline.com/doi/abs/10.1080/00150190108225111.
[7] D. Lusk. Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal. Opt. Commun. [Online]. 198 (2001, November) 273-279. Available: https://www.sciencedirect.com/science/article/abs/pii/S0030401801015310.
[8] R. W. Peng. Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers. Appl. Phys. Lett. [Online]. 80 (2002, April) 3063. Available: https://aip.scitation.org/doi/10.1063/1.1468895.
[9] H. Zhang, S. Liu, X. Kong, B. Bian and Y. Dai. Omnidirectional photonic band gaps enlarged by Fibonacci quasi-periodic one-dimensional ternary superconductor photonic crystals. Solid State Commun. [Online]. 152 (2012, December) 2113-2119. Available: https://www.sciencedirect.com/science/article/pii/S0038109812005297.
[10] C. H. Costa, L. F. C. Pereira, and C. G. Bezerra. Light propagation in quasiperiodic dielectric multilayers separated by grapheme. Phys. Rev. B. [Online]. 96 (2017, September) 125412. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.125412.
[11] F. U. Al-sheqefi and W. Belhadj. Photonic band gap characteristics of one-dimensional graphene-dielectric periodic structures. Superlattices and Microstructures. [Online]. 88 (2015, December) 127-138. Available: https://www.sciencedirect.com/science/article/pii/S0749603615301853?via%3Dihub.
Absorption spectra of a graphene embedded one dimensional Fibonacci aperiodic structure * 57
[13] Y. Chen, L. Bian, P. Liu, G. Li, Y. Xie. Controlling light absorption and transmission in graphene-embedded structure with Fano resonance and FP resonance. Superlattices and Microstructures. 124 (2018, December) 185-191. Available: https://www.sciencedirect.com/science/article/pii/S074960361831396X.
[14] Ali Moftakharzadeh, B. Afkhami Aghdaand Mehdi Hosseini. Noise Equivalent Power Optimization of Graphene- Superconductor Optical Sensors in the Current Bias Mode. JOPN. [Online]. 3 (3) (2018, Summer) 1-12. Available: http://jopn.miau.ac.ir/article_3040.html.
[15] V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker and S. Seal, Graphene based materials: Past, present and future. Prog. Mater. Sci. [Online]. 56 (2011, October) 178-1271. Available:
https://www.sciencedirect.com/science/article/pii/S0079642511000442?via%3Dihub.
[16] Y. Yamaguchi, S. Takagi and M. Takenaka. Low-loss graphene-based optical phase modulator operating at mid-infrared wavelength. Jpn. J. Appl. Phys. [Online]. 57 4) (2018, March) 401-406. Available:
http://iopscience.iop.org/article/10.7567/JJAP.57.04FH06.
[17] S. Aydin, B. Kalkan, C. Varlikli and C. elebi, P3HTgraphene bilayer electrode for Schottky junction photodetectors. Nanotechnol. [Online]. 29 (14) (2018, February) 145502-145511. Available: http://iopscience.iop.org/article/10.1088/1361-6528/aaaaf5/meta.
[18] Y. Li, L. Qi, J. Yu, Z. Chen, Y. Yao and X. Liu. One-dimensional multi-band terahertz graphene photonic crystal filters. Opt. Mater. Express. [Online]. 7 (2017, May) 1228-1239. Available: https://www.osapublishing.org/ome/abstract.cfm?uri=ome-7-4-1228.
[19] D. Smirnova. Deeply subwavelength electromagnetic Tamm states in graphene metamaterials. Phys. Rev. B. [Online]. 89 (2014, June) 245414. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.245414.
[20] B. Zhao and Z. M. Zhang. Strong Plasmonic Coupling between Graphene Ribbon Array and Metal Gratings. ACS Photonics. [Online]. 2 (11) (2015, October) 1611-1618. Available: https://pubs.acs.org/doi/abs/10.1021/acsphotonics.5b00410.
[21] A. Andryieuski and A. V. Lavrinenko. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach. Opt. Express. [Online]. 21 (2013, April) 91449155. Available:
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-21-7-9144.
[22] L. Falkovsky and S. Pershoguba. Optical far-infrared properties of a graphene monolayer and multilayer. Phys. Rev. B. [Online]. 76 (15) (2007, October) 153410. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.76.153410.
[23] H. Hung, C. Wu and S. Chang. Terahertz temperature-dependent defect mode in a semiconductor-dielectric photonic crystal. J. Appl. Phys. [Online]. 110 (2011, October) 093110. Available: https://aip.scitation.org/doi/abs/10.1063/1.3660230.
[24] J. Topham, O. Boorman, I. L. Hosier. M. Praeger, R. Torah, A. Vaughan, T. Andritsch and S. G. Swingler. Dielectric studies of polystyrene-based, high-permittivity composite systems. IEEE. [Online]. (CEIDP) (2014, October) 711-714. Available: https://ieeexplore.ieee.org/document/6995854.
[25] C. Shearer, A. D. Slattery and A. J. Stapleton. Accurate thickness measurement of graphene, Nanotechnol. [Online]. 27 (2016, February) 125704. Available: http://iopscience.iop.org/article/10.1088/0957-4484/27/12/125704/pdf.