[1] C. M., Bender and S. Boettcher, Real spectra in non- Hermitian Hamiltonians having PT- symmetry, Phys. Rev. Lett. 80 (1998) 5243.
[2] C. M., Bender; D. C., Brody, and H. F., Jones, Complex extension of quantum mechanics, Phys. Rev. Lett. 89 (2002) 270401–240404.
[3] C. M., Bender, Making sense of non-Hermitian hamiltonians, Rep. Prog. Phys. 70 (2007) 947–1018.
[4] Y. Kivshar, G. P. Agrawal, Optical Solitons from fibers to photonic crystals, Academic Press, (2003).
[5] E. Rueter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev and D. Kip, Observation of parity-time symmetry in optics, Nat. Phys. 6 (2010) 192.
[6] R. El., Ganainy, K. G., Makris, D. N., Christodoulides, and Z. H., Musslimani, Theory of coupled optical PT-symmetric structures, Opt. Lett. 32 (2007) 2632–2634.
[7] A., Ruschhaupt, F., Delgado and J. G., Muga, Physical realization of PT-symmetric potential scattering in a planar slab waveguide, J. Phys. A., 38 (2005) L171–L176.
[8] A. A., Zyablovsky, A. P., Vinogradov, A. A., Pukhov, A. V., Dorofeenko and A. A., Lisyansky, “PT-symmetry in optics”, Phys. Usp. 57 (2014) 1063–1082.
[9] L. Feng, Z. J. Wong, R. M. Ma, Y. Wang and X. Zhang, Single-mode laser by parity-time symmetry breaking, Science, 346 (2014) 972.
[10] A. A., Sukhorukov, Z. Y., Xu, and Y. S., Kivshar, Nonlinear suppression of time reversals in PT-symmetric optical couplers, Phys. Rev. A. 82 (2010) 043815–043818.
[11] L. Safaei, M. Hatami and M. Borhani Zarndi, Numerical analysis of stability for temporal Bright solitons in a PT-symmetric NLDC, J. Optoelectronical Nanostructures, 2. 2 (2017) 69-78.
[12] L. Safaei, M. Hatami and M. Borhani Zarndi, Stability of Temporal Dark Soliton in PT-Symmetric Nonlinear Fiber Couplers in Normal Dispersion Regime, J Laser Opt Photonics, 3 (2016) 141.
[13] I. V., Barashenkov and M., Gianfreda, An exactly solvable PT-symmetric dimer from a hamiltonian system of nonlinear oscillators with gain and loss, J. Phys. A. 47 (2014) 282001–282018.
[14] L. Safaei, M. Hatami and M. Borhani Zarndi, PT-Symmetric Nonlinear Directional Fiber Couplers with Gain and Loss for Ultrashort Optical Pulses, J. Laser Opt. Photonics, 4 (2017) 155.
[15] X. Chen and J. Yang, A direct perturbation theory for solitons of the derivative nonlinear Schrodinger equation and the modified nonlinear Schrodinger equation, Phys. Rev. E. 65 (2002) 066608.
[16] X., Lü and W. X., Ma, Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation, Nonlinear Dyn. 85 (2016) 1217.
[17] A., Lupu, H., Benisty and A. Degiron, Using optical PT-symmetry for switching applications, Photonics Nanostruct, Fundam. Appl. 12 (2014) 305–311.
[18] S. Suchkov, A. Sukhorukov, J. Huang, S. Dmitriev, C. Lee and Y. Kivshar, Nonlinear switching and solitons in PT-symmetric photonic systems, Laserand Photonics Rev. 10 (2015).
[19] N. V., Alexeeva, I. V., Barashenkov, A. A., Sukhorukov and Y. S., Kivshar, Optical solitons in PT-symmetric nonlinear couplers with gain and loss, Phys. Rev. A. 85 (2012) 063837–13.
[20] C. Q., Dai, and J. F. Zhang., Controllable dynamical behaviors for spatiotemporal bright solitons on continues wave background, Nonlinear Dyn., (2013).
[21] Y., Zhu, W. Qin, J. Li, and et al., Recurrence behavior for controllable excitation of rogue waves in a two-dimensional pt-symmetric couple. Nonlinear Dyn. 88 (2017) 1883.
[22] R., Driben and B. A., Malomed, Stability of solitons in parity-time-symmetric couplers, Opt. Lett. 36 (2011) 4323-4325.