[1] N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A.
Egorov, A. E. Zhukov, M. V Maximov, P. S. Kopev, and Z. Alferov. Gain and
differential gain of single layer InAs/GaAs quantum dot injection lasers. Appl.
Phys. Lett. 69(9) (1996) 1226–1228.
Available: https://aip.scitation.org/doi/10.1063/1.117419
[2] D. Klotzkin, K. Kamath, K. Vineberg, P. Bhattacharya, R. Murty, and J. Laskar.
Enhanced modulation bandwidth (20 GHz) of In/sub 0.4/Ga/sub 0.6/As-GaAs selforganized
quantum-dot lasers at cryogenic temperatures: role of carrier
relaxation and differential gain. IEEE Photonics Technol. Lett. 10(7) (1998, July)
932–934. Available: https://ieeexplore.ieee.org/document/681274
[3] G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester. Extremely low roomtemperature
threshold current density diode lasers using InAs dots in
In0.15Ga0.85As quantum well. Electron. Lett. 35 (1999) 1163–1165.
Available: https://pdfs.semanticscholar.org/29f5
[4] R. P. Sarzala. Modeling of the threshold operation of 1.3-/spl mu/m GaAs-based
oxide-confined (InGa)As-GaAs quantum-dot vertical-cavity surface-emitting
lasers. IEEE J. Quantum Electron. 40(6) (2004) 629–639.
Available: https://ieeexplore.ieee.org/document/1303776
[5] M. V Maksimov, N. Y. Gordeev, S. V Zaitsev, P. S. Kop’ev, I. V Kochnev, N. N.
Ledentsov, A. V Lunev, S. S. Ruvimov, A. V Sakharov, A. F. Tsatsul’nikov, Y.
M. Shernyakov, Z. I. Alferov, and D. Bimberg. Quantum dot injection heterolaser
with ultrahigh thermal stability of the threshold current up to 50 °C.
Semiconductors. 31(2) (1997, Feb.) 124–126.
Available: https://cip.cornell.edu/handle/cul.maik.sc/1214589781
[6] O. B. Shchekin and D. G. Deppe. 1.3m InAs quantum-dot laser with K from 0 to
80C. Appl. Phys. Lett. 80 (2002) 3277–3279.
[7] D. Bimberg, M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, V. M. Ustinov,
A. E. Zhukov, A. R. Kovsh, M. V Maximov, Y. M. Shernyakov, and B. V
Volovik. Quantum dot lasers: Breakthrough in optoelectronics. Thin Solid Films.
367 (2000) 235–249. Available: https://www.sciencedirect.com/science/article/pii/
[8] M. H. Yavari and V. Ahmadi. Effects of Carrier Relaxation and Homogeneous
Broadening on Dynamic and Modulation Behavior of Self-Assembled Quantum-
Dot Laser. IEEE J. Sel. Top. Quantum Electron. 17(5) (2011, Sep.) 1153–1157.
Available: https://ieeexplore.ieee.org/document/5735155/
[9] J. Urayama, T. B. Norris, J. Singh, and P. Bhattacharya. Observation of phonon
bottleneck in quantum dot electronic relaxation. Phys. Rev. Lett. 86(21) (2001,
May) 4930–4933. Available: https://www.ncbi.nlm.nih.gov/pubmed/11384384
[10] A. Fiore and A. Markus. Differential Gain and Gain Compression in Quantum-
Dot Lasers. IEEE J. Quantum Electron. 43(4) (2007, Mar.) 287–294.
Available: https://ieeexplore.ieee.org/document/4099479/
[11] C. Wang, F. Grillot, and J. Even. Impacts of Wetting Layer and Excited State on
the Modulation Response of Quantum-Dot Lasers. IEEE J. Quantum Electron.
48(9) (2012, Sep.) 1144–1150.
Available: http:// ieeexplore.ieee.org/document/6220843/
[12] P. Bhattacharya, J. Singh, H. Yoon, Xiangkun Zhang, A. Gutierrez-Aitken, and
Yeeloy Lam. Tunneling injection lasers: a new class of lasers with reduced hot
carrier effects. IEEE J. Quantum Electron. 32(9) (1996) 1620–1629.
Available: https://ieeexplore.ieee.org/document/535367/
[13] X. Zhang, A. Gutierrez-Aitken, D. Klotzkin, P. Bhattacharya, C. Caneau, and R.
Bhat. 0.98-μm multiple-quantum-well tunneling injection laser with 98-GHz
intrinsic modulation bandwidth. IEEE J. Sel. Top. Quantum Electron. 3(2) (1997,
Apr.) 309–314. Available: http://irepose.iitm.ac.in:8080/jspui/handle/11717/4416
[14] H. Yoon, A. L. Gutierrez-Aitken, R. Jambunathan, J. Singh, and P. K.
Bhattacharya. A ‘cold’ InP-based tunneling injection laser with greatly reduced
Auger recombination and temperature dependence. IEEE Photonics Technol. Lett.
7(9) (1995, Sep.) 974–976.
Available: https://ieeexplore.ieee.org/document/414673/
[15] P. Bhattacharya, S. Ghosh, S. Pradhan, J. Singh, Zong-Kwei Wu, J. Urayama,
Kyoungsik Kim, , and T. B. Norris. Carrier dynamics and high-speed modulation
properties of tunnel injection InGaAs-GaAs quantum-dot lasers. IEEE J. Quantum
Electron. 39(8) (2003) 952–962.
Available: https://ieeexplore.ieee.org/document/1211140/
[16] G. Cerulo, L. Nevou, V. Liverini, F. Castellano, and J. Faist. Tuning the dynamic
properties of electrons between a quantum well and quantum dots. J. Appl. Phys.,
112(4) (2012) 43702.
Available: https://aip.scitation.org/doi/abs/10.1063/1.4746789
[17] S. Bhowmick, M. Z. Baten, T. Frost, B. S. Ooi, and P. Bhattacharya. High
Performance InAs/In0.53Ga0.23Al0.24As/InP Quantum Dot 1.55 μm Tunnel Injection
Laser. IEEE Journal of Quantum Electronics. 50(1) (2014) 7-14.
Available: https://ieeexplore.ieee.org/document/6665003/
[18] H. Abbaspour, V. Ahmadi, and M. H. Yavari. Analysis of QD VCSEL Dynamic
Characteristics Considering Homogeneous and Inhomogeneous Broadening.
IEEE J. Sel. Top. Quantum Electron. 17(5) (2011, Sep.) 1327–1333.
Available: https://ieeexplore.ieee.org/document/5735154/
[19] F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E.
Homeyer, and S. Loualiche. Spectral analysis of 1.55 μmInAs-InP(113)B
quantum-dot lasers based on a multipopulation rate equations model. IEEE J.
Quantum Electron. 45(7) (2009, July) 872–878.
Available: https://hal.archives-ouvertes.fr/hal-00501878/document
[20] H. Jiang and J. Singh. Strain distribution and electronic spectra of InAs/GaAs selfassembled
dots: An eight-band study. Phys. Rev. B. 56 (1997) 4696–4701.
Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.56.4696
[21] C. Tong, D. Xu, and S. F. Yoon. Carrier relaxation and modulation response of
1.3-μmInAs-GaAs quantum dot lasers. J. Lightwave Technol. 27(23) (2009, Dec.)
5442–5450. Available: https://ieeexplore.ieee.org/document/5208395/
[22] T. W. Berg, J. Mork. Quantum dot amplifiers with high output power and low
noise. Applied Physics Letters. 82(18) (2003, May) 3083-3085.
Available: https://aip.scitation.org/doi/10.1063/1.1571226.