[1] P. Resis, S. Carayon, J. Bleuse, A. Pron, Low polydispersity core/shell nanocrystals of CdSe/ZnSe and CdSe/ZnSe/ZnS type: preparation and optical studies, Synthetic Metals 139, (2003) 649-652.
[2] M. Cristea, E.C. Niculescu. ,Hydrogenic impurity states in CdSe/ZnS and ZnS/CdSe core-shell nanodots with dielectric mismatch, Eur Phys J B 85 (2012) 191(1-13).
[3] E.C. Niculescu, M. Cristea,Impurity states and photoionization cross section in CdSe/ZnS core–shell nanodots with dielectric confinement, J Lumin 135 (2013) 120–127.
[4] M. Cristea, A. Radu, E.C. Niculescu, Electric field effect on the third-order nonlinear optical susceptibility in inverted core–shell nanodots with dielectric confinement,. J Lumin 143 (2013) 592–599.
[5] S. Gottapu and K. Muralidharan, Room temperature synthesis of organic surfactant-free PbS and PbSe nanoparticles exhibiting NIR absorption, New J. Chem., 40 (2016) 832-837.
[6] Z. Gui, G. Xiong, F. Gao ,Parameter-dependent third-order nonlinear susceptibility of parabolic InGaN/GaN quantum dots, Microelectronics Journal 38 (2007) 447–451. [7] X. Feng, G. Xiong_, X. Zhang, H. Gao, Third-order nonlinear optical susceptibilities associated with intersubband transitions in CdSe/ZnS core–shell quantum dots, Physica B 383 (2006) 207–212. [8] L. Liu, J. Li, G. Xiong, Studies of the third-order nonlinear optical susceptibility for InxGa1− xN/GaN cylinder quantum dots, Physica E 25 (2005) 466.
[9] D J. Griffiths, Introduction to Quantum Mechanics. Boston, Addison-Wesley; 2004.
[10] G. Guizzett, F. Filippin; E. Reguzzon, G.Samoggia, Electrical Properties and Spectral Response of PbS_Ge Heterojunctions, Phys. Status Solidi A 6 (1971) 605–610.
[11] R. A. Knapp, Photoelectric Properties of Lead Sulfide in the Near and Vacuum Ultraviolet, Phys. Rev. 132 (1963) 1891– 1897.
[12] http://www.tf.uni-kiel.de/matwis/amat/semi_en/kap_2/backbone/r2_3_1.html.
[13] M. Şahin, S. Nizamoglu, A. Emre Kavruk and H. Volkan Demir ,Self-consistent computation of electronic and optical properties of a single exciton in a spherical quantum dot via matrix diagonalization method, J App. Phys. 106 (2009) 43704-5.
[14] S. Khosroabadi,S. H. Keshmiri, S. Marjani ,Design of a high efficiency CdS/CdTe solar cell withoptimized step doping, film thickness, and carrier lifetime of the absorption layer, J. Europ. Opt. Soc. Rap. Public. 9 (2014) 14052(1-6).
[15] J.W. Haus, H.S. Zhou, I. Honma, H. Komiyama, Quantum confinement in semiconductor heterostructure nanometer-size particles, Phys. Rev. B 47 (1993) 1359-1365.
[16] D.J. Ben Daniel, C.B. Duke, Space-Charge Effects on Electron Tunneling, Phys. Rev. 152 (1968) 683-692. [17] L.E. Brus, A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites, J. Chem. Phys. 79 (1983) 5566-5571.
[18] M. Kouhi, A. Vahedi, A. Akbarzadeh, Y. Hanifehpour and S. W. Joo ,Investigation of quadratic electro-optic effects and electro-absorption process in GaN/AlGaN spherical quantum dot, Nanoscale Research Letters 9 (2014) 131(1-6).
[19] T. Takagahara, Excitonic optical nonlinearity and exciton dynamics in semiconductor quantum dots, Phys. Rev. B 36 (1987) 9293.
[20] X.N. Liu and D.Z. Yao, Parameter-dependent third-order optical nonlinearity in a CdSe/ZnS quantum dot quantum well in the vicinity of a gold nanoparticle, Eur. Phys. J. B 78 (2010) 95–102.
[21] I. Hemdana, M. Mahdouani and R. Bourguiga, Investigation of the third-order nonlinear optical susceptibilities associated with intersubband transitions in CdSe/ZnS/SiO2 core/shell/shell quantum dot, Superlattices and Microstructures 60 (2013) 336–348.
[22] R. Coso and J. Solis, Relation between nonlinear refractive index and third order susceptibility in absorbing media, J. Opt. Soc. Am. B. 21(3) (2004) 640-644.