[1 ] F. Tam and N. Halas. NPlasmon response of nanoshell dopants in organic films: a simulation study. Prog Org Coat. 47 (2003) 275–278. Available: nathan.instras .com/ResearchProposalDB/doc-102.pdf
[2 ] F. Tam, C. Moran and N. Halas. Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment. J Phys Chem B. 108, (2004) 17290–17294. Available: http:// pubs. acs. org/ doi/ abs /10.1021 /jp048499x.
[3 ] D. O’Neal, L. Hirsch et al. Photothermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 209 (2004) 171–176. Available: https://www.ncbi.nlm.nih.gov/pubmed/15159019
[4 ] K. R. Catchpole, A. Polman. Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett. 93 (2008) 191113. Available: http:// aip. scitation. org/ doi/ abs/10.1063/1.3021072
[5 ] Ping-Ping Fang et al. Conductive Gold Nanoparticle Mirrors at Liquid/Liquid Interfaces. ACS Nano. 7 (10) (2013) 9241–9248. Available: http://pubs.acs. org/ doi/abs/10.1021/nn403879g; S.K. Ghosh, T. Pal. Chem. Rev. 107, (2007) 4797- 4862.
[6 ] L. Fontana et al. Gold and silver nanoparticles based networks as advanced materials for optoelectronic devices. Presented at 18th Italian National Conference on Photonic Technologies (Fotonica 2016). Available: http:// ieeexplore. ieee.org/ document/7858049/?reload=true
[7 ] Y. Shoji, K. Kintaka et al. Low-crosstalk 2 × 2 thermo optic switch with silicon wire waveguides. Opt. Express. 18(9) (2010) 9071–9075. Available: https://www.osapublishing.org/abstract.cfm?uri=oe-18-9-9071
[8 ] M. I. Lapsley, S. S. Lin et al. An in-plane, variable optical attenuator using a fluid-based tunable reflective interface. Appl. Phys. Lett. 95(8) (2009) 083507. Available: http://aip.scitation.org/doi/abs/10.1063/1.3213348
[9 ] T. Ochiai et al. Enhancement of self-assembly of large (>10 nm) gold nanoparticles on an ITO substrate. Appl. Phys. Express 7 (2014) 065001. Available: http://iopscience.iop.org/article/10.7567/APEX.7.065001/pdf
[10 ] D. Wan et al. Using Spectroscopic Ellipsometry to Characterize and Apply the Optical Constants of Hollow Gold Nanoparticles. ACS nano. 3 (4) (2009) 960-970. Available: http://pubs.acs.org/doi/abs/10.1021/nn8009008
[11 ] G. Jayaswal, G. Mistura and M. Merano. Weak measurement of the Goos-Hanchen shift. Opt. Lett. 38, 1232–1234(2013). Available: https:// www. osapublishing.org/abstract.cfm?uri=ol-38-8-1232
[12 ] W. Löffler et al. Polarization-dependent Goos–Hänchen shift at a graded dielectric interface. Opt. Commun. 283, 18, (2010) 3367–3370. Available:
[13 ] H. M. Lai, S.W. Chan et al. Nonspecular effects on reflection from absorbing media at and around Brewster's dip. J. Opt. Soc. Am., 23 (2006) 3208. Available: https://www.ncbi.nlm.nih.gov/pubmed/17106478
[14 ] L. G. Wang et al. Negative and Positive Lateral Shift of a Light Beam Reflected from a Grounded slab. Opt. Lett. 31(8) (2006) 1124-1126. Available: https://pdfs.semanticscholar.org/33c4/83981f7d39d151f6ba9022702a66ecdc9cac.pdf
[15 ] S. Grosche, M. Ornigotti et al. Goos-Hänchen and Imbert-Fedorov shifts for Gaussian beams impinging on graphene-coated surfaces. Opt. Express. 16 (2015) 23. Available: https://www.osapublishing.org/abstract.cfm?uri=oe-23-23-30195
[16 ] V. J. Yallapragada, A. P. Ravishankar et al. Observation of giant Goos-Hänchen and angular shifts at designed metasurfaces. Scientific Reports. 6 (2016) 19319. Available: https://www.nature.com/articles/srep19319
[17 ] Y. Wan , Z. Zheng, W. Kong et al., Fiber-to-fiber optical switching based on gigantic Bloch-surface-wave-induced Goos-Hänchen shifts. J. Photon. 5 (2013) 7200107. Available: http:// ieeexplore. ieee.org/ iel5/ 4563994/ 6428647/ 06384639.pdf
[18 ] X. Wang, M. Sang et al., IEEE Photonics Technology Lett. 28 (3) (2015). [19 ] M. Born and E. Wolf, Principles of Optics, 7th ed., Pergamon Press, London, 2005.
[20 ] F. Goos and H. Hanchen. Ein neuer und fundamentaler Versuch zur Total reflexion. Ann. Phys. 436 (1947) 333–346. Available: onlinelibrary. wiley. com/doi/10.1002/andp.19474360704/abstract
[21 ] C. Imbert. Calculation and Experimental Proof of the Transverse Shift Induced by Total Internal Reflection of a Circularly Polarized Light Beam. Phys. Rev. D. 5 (1972) 787. Available: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.5. 787
[22 ] F.I. Fedorov et al. On the theory of total internal reflection. SSSR. 105 (3) (1955) 465-468.
[23 ] A. Y. Qin, Y. Li et al. Measurement of spin Hall effect of reflected light. Opt. Lett. 34, (2009)2551–2553. Available: https:// www. osapublishing. org/ abstract. cfm?uri=ol-34-17-2551; V. Fedoseyev. Conservation laws and angular transverse shifts of the reflected and transmitted light beams. Opt. Commun. 282 (2009)1247–1251. Available: https:// www. sciencedirect. com/ science/article/pii/S0030401808012571
[24 ] H. M. Lai, C. W. Kwok et al. Energy-flux pattern in the Goos-Hänchen effect. Phys. Rev. E. 62 (2000) 7330. Available: https:// www. researchgate. net/.../12226103_Energy-flux_pattern_in_the_Goos-Hanchen effect
[25 ] M. Ornigotti and A. Aiello. Goos–Hänchen and Imbert–Fedorov shifts for bounded wavepackets of light. J. Opt. 15 (2013) 014004. Available: http://iopscience.iop.org/article/10.1088/2040-8978/15/1/014004/meta
[26 ] R. Tsekov et al. Quantifying the Blue Shift in the Light Absorption of Small Gold Nanoparticles. Available: https://arxiv.org/pdf/1702.04513
[27 ] O. A. Yeshchenko. Temperature effects on the surface plasmon resonance in copper nanoparticles. Ukrainian Journal of Physics. 3 (58) (2013) 249-259. Available: https://arxiv.org/abs/1303.3778
[28 ] Lucia B Scaffardi and Jorge O Tocho. Size dependence of refractive index of gold Nanoparticles. Nanotechnology, 17 (2006) 1309–1315. Available: http://iopscience.iop.org/article/10.1088/0957-4484/17/5/024/meta
[29 ] G. Solookinejad, M. Panahi et al. Giant Goos-Hänchen Shifts in Polaritonic Materials Doped with Nanoparticles. Plasmonics 12(3) (2017) 849-854. Available:https://www.sparrho.com/item/giant-goos-hanchen-shifts-in-polaritonic materials-doped-with-nanoparticles/a61134/