[1] E. Yablonovich, Inhibited Spontaneous Emission in Solid-State Physics and
Electronics, Phys. Rev. Lett. 58 (1987) 2059-2062.
[2] S. John, Strong localization of photons in certain disordered dielectric
superlattices, Phys. Rev. Lett. 58 (1987) 2486-2489.
[3] H. F. Zhang, S. B. Liu and X. K. Kong, Analsys of the properties of tunable prohibited band gaps for two-dimensional unmagnetized plasma photonic crystals under TM mode, Acta Phys. Sin. 60 (2011) 055209
[4] D. N. Chigrin, A. V. Lavrinenko, D.A. Yarotsky, S. V. Gaponenko, Observation of total omnidirectional reflection from a one-dimensional dielectric lattice, Appl. Phys. A: Mater. Sci. Process. 68 (1999) 25-28.
[5] H. F. Zhang, S. B. Liu, X. K. Kong, B. R. Bian and Y. Dai, Omnidirectional photonic band gap enlarged by one-dimensional ternary unmagnizied plasma photonic crystals based on a new Fibonacci quasiperiodic structure, Phys. Plasmas 19 (2012) 112102.
[6] A. V. Lavrinenko, S. V. Zhukovsky, K. S. Sandomirski, and S. V. Gaponenko, Scaling properties of an optical Cantor filter, Phys. Rev. E. 65 (2002) 036621.
[7] X. L. Quan and X. B. Yang, Band rules for the frequency spectra of three kinds of aperiodic photonic crystals with negative refractive index materials, Chin. Phys. B. 18 (2009) 5313–1–13
[8] H. F. Zang, S. B. Liu and H. Yang, “Omnidirectional photonic band gaps in one-dimensional ternary superconductor-dielectric photonic crystals based on a new Thue-Morse aperiodic structure,” J. Supercond. Nov. Magn 27 (2014) 41-52
[9] M. Tinkham, Introduction to superconductivity, McGraw-Hill, New York 1996.
[10] P. Athe, S. Srivastava, Tunable Fano resonance in one dimensional superconducting photonic crystal containing Multiple superconductor. J. Supercond. Nov. Magn. 29, (2016) 2247–2252.
[11] M. Upadhyay, S. K. Awasthi, L. Shiveshwari, P. K. Srivastava, S. P. Ojha, Thermally tunable photonic filter for WDM networks using 1D superconductor dielectric photonic crystals. J. Supercond. Nov. Magn. 28, (2015) 2275–2280.
[12] C. H. Raymond Oai and T. C. Auyeing, Polariton Gap in 1-D superconducting photonic crystal, Phys. Lett. A 259 (1999) 413.
[13] T. van Duzer and C. W. Turner, Principles of Superconductive Devices and Circuits, Edward Arnold, London 1981.
[14] A. Yariv, Quantum Electronics, John Wiley & Sons, New York 1989.
[15] C. Z. Li, S. B. Liu, X. K. Kong, B. R. Bian and x. y. Zhang, Tunable photonic band gap in a one-dimensional superconducting-dielectric superlattice, Appl. Opt. 50 (16) (2011) 2370-2375.
[16] l. L. Lyubchanskii, N. N. Dadonenkova, A. E. Zabolotin, Y. P. Lee and T. Rasing, A one-dimensional photonic crystal with a superconducting defect layer. J. Opt. A, Pure Appl. Opt. 11 (2009) 114014.
[17] C. J. Wu and Y. L. Chen, Microwave properties of a high temperature superconductor and ferromagnetic bilayer structure, Progress In Electromagnetic Research. 111 (2011) 433–445.
[18] M. S. Chen, C. J. Wu and T. J. Yang, Investigation of optical properties in near-zero-permittivity operation range for a superconducting photonic crystal, Appl. Phys. A. 104 (2011) 913–919.