Temperature Tunability of Dielectric/ Liquid Crystal / Dielectric Photonic Crystal Structures

Document Type : Articles

Authors

Department of Physics, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

Abstract

Recently, photonic crystals doped with liquid crystal (LC) material have
gained much research interest. In this article new ternary one-dimensional photonic
crystal introduced and studied. The liquid crystal layer of 5CB and 5PCH is sandwiched
by two dielectric layers. For the first time, we use four structures SiO2/UCF35/CaF2,
SiO2/5CB/CaF2, NFK51/UCF35/NPSK53 and NFK51/5CB/NPSK53. The effect of
temperature on transfer band gap of these photonic crystals is investigated with
transferred matrix method. The results show that in all four structures PBG for
extraordinary ray (ne) is very large than ordinary ray (no) and with increasing of
temperature, PBG shifts to red wavelength. PBG width is very vast and variation of the
figure with respect temperature is very sharp for SiO2/UCF35/CaF2 structure. Also, the
suggested design takes high tunability due to the infiltration of the LC material. One can
use the proposed structure

Keywords


[1] E. Yablonovitch, Photonic crystals, J. Mod. Opt. 41 (2) (1994)173-194.
[2] E. Rafiee, F. Emami, Design and Analysis of a Novel Hexagonal Shaped Channel Drop Filter Based on Two-Dimensional Photonic Crystals, J. Optoelect. Nanost., 2 (1) (2016) 39-46.
[3] S. K. Awasthi, S. P. Ojha, Design of a tunable optical filter by using one-dimensional ternary photonic band gap material, Prog. Elect. Res. 65 (2008) 117-132.
[4] F. Mehdizadeh, H. Alipour, S. Serajmohammadi, All optical 1 to 2 decoder based on photonic crystal ring Resonator, J. Optoelect. Nanost., 2 (1) (2017) 1-10.
[5] A. Banerjee, Enhanced temperature sensing by using one-dimensional ternary photonic band gap structures, Prog. Elect. Res. Lett. 11 (2009) 129-137.
[6] B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, C. J. M. Smith, Temperature tuning of the optical properties of planar photonic crystal microcavities, Appl. Phys. Lett. 84 (6) (2004) 846-848.
[7] J. D. Joannopolous, S. G. Johnson, J. N. Winn, R. D. Meade. Photonic Crystals: Molding the Flow of Light, Second Edition, Princeton University Press, ISBN 978-0-691, 2008, 12456-8.
[8] V. I. Belotelov, A. K. Zvezdin, Magneto-optical properties of photonic crystals, J. Opt. Soc. Am. B 22 (1) (2005) 286-292.
[9] Tay, S., Thomas, J., Momeni, B., Askari, M., Adibi, A., Hotchkiss, P.J., Jones, S.C., Marder, S.R., Norwood, R.A. & Peyghambarian, N., Planar photonic crystals infiltrated with nanoparticle/polymer composites, Appl. Phys. Lett. 91 (22) (2007) 221109.
[10] J. Jagerska, H. Zhang, Z. Diao, N. L. Thomas, R. Houdre, Refractive index sensing with an air-slot photonic crystal nanocavity, Opt. Letters 35 (15) (2010) 2523-2525.
[11] S. Gu. Z. Kubo, K. Takahashi, A. Fujishima, H. Segawa, O. Sato, Control of the optical properties of liquid crystal-infiltrated inverse opal structures using photo irradiation and/or an electric field, Chem. Mate. 17 (9) (2005) 2298-2309.
[12] K. Jamshidi, S. Rashidi, A. Vahedi, Tuning the defect mode in ternary photonic crystal with external voltage for designing a controllable optical filter, Eur. Phys. J. D 69 (2015) 221.
[13] P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, D. Wiersma, Optical switching by capillary condensation, Nature Photonics 1 (2007) 172-175.
[14] R. Heijden, C. F. Carlström, J. Snijders, R. W. Heijden, F. Karouta, R. Notzel, H. Salemink, C. Kjellander, C. Bastiaansen, D. Broer, D. E. Drift, InP-based two-dimensional photonic crystals filled with polymers, Appl. Phys. Lett. 88 (16) (2006) 161112.
[15] H. T. Wang, I. V. Timofeev, K. Chang, V. Ya. Zyryanov, W. Lee, Tuneable narrow-bandpass filter based on an asymmetric photonic bandgap structure with a dual-mode liquid crystal, Opt. Express 22 (12) (2014) 15097-15103.
[16] G. Mertens, T. Roder, R. Schweins, K. Huber, H. S. Kitzerow, Shift of the photonic band gap in two photonic crystal/liquid crystal composites, Appl. Phys. Lett. 80 (11) (2002) 1885-1887.
[17] J. A. Reyes, J. A. R. Avendano, P. Halevi, Electrical tuning of photonic crystals infilled with liquid crystals, Opt. Comm. 281 (9) (2008) 2535–2547.
[18] S.M.Weiss, H. Ouyang, J. Zhang, P. M. Fauchet, Electrical and thermal modulation of silicon photonic bandgap microcavities containing liquid crystals, Opt. Express 13 (4) (2005) 1090-1097.
[19] I. C. Khoo, S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals, World Scientific, Singapore, 1993.
[20] J. S. Yong, J. S. Wook , K. B. Cheon , B. J. Hyun, A. Fumito, C. S. Won, Polymer Stabilization of Liquid-Crystal Blue Phase II toward Photonic Crystals, ACS Appl. Mater. Inte. 9 (10) (2017) 8941–8947.
[21] P. Lesiak, D. Budaszewski, K. Bednarska, M. Wojcik, P. Sobotka, M. Chychłowski, T. R. Wolinski, Thermal optical nonlinearity in photonic crystal fibers filled with nematic liquid crystals doped with gold nanoparticles, Proc. SPIE, Non. Opt. Appl. X, 10228 (2017) 102280-1.
[22] R. Ozaki, M. Ozaki K. Yoshino, Electrically Rotatable Polarizer Using One-Dimensional Photonic Crystal with a Nematic Liquid Crystal Defect Layer, Crystals 5 (2015) 394-404.
[23] R. Ozaki, T. Matsui, M. Ozaki, K. Yoshino, Electrically color-tunable defect mode lasing in one-dimensional photonic band gap systems containing liquid crystal, Appl. Phys. Lett. 82 (2003) (21) 3593.
[24] Y.T. Lin, W. Y. Chang, C. Y. Wu, V. Zyryanov, W. Lee, Optical properties of one-dimensional photonic crystal with a twisted-nematic defect layer, Opt. Express 18 (2010) (26) 26959.
[25] M.S. Mohamed, M.F.O. Hameed, M.M. El-Okr Salah, S.A. Obayya, Characterization of one dimensional liquid crystal photonic crystal structure, Optik – Int. J. Lig. Elec. Opt. 127 (20) (2016) 8774–8781.
[26] G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications, Academic Press, 1997 San Diego, CA, USA.
[27] L. Jun, W. Shin Tson, Self-consistency of Vuks for liquid crystal refractive indices, J. Appl. Phys. 96 (11) (2004)6253-6258.
[28] M. Born, E. Wolf, Principles of Optics, 6th Edition, Peragamon, Oxford, 1980.
[29] J. Li, S. Gauzia, S. T. Wu, High temperature-gradient refractive index liquid crystals, Opt. Express 12 (9) (2004) 2002.
[30] B. Suthar, V. Kumar, A. Kumar, K. S. Singh, A. Bhargava, Thermal expansion of photonic onal photonic crysband gap for one dimensital, Prog. Elect. Res. 32 (2012) 81–90.
[31] M. Han, A. Wang, Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient, Opt. Letters 32 (2007) 1800-1802.
[32] p. Yeh, Electromagnetic propagation in birefringent layered media, J. Opt. Soc. Am. 69 (1979) (5) 742–756.
[33] S. Roshan Entezara, A. Madaniab, M. Karimi Habila, A. Namdara, H. Tajallia,