[1] A. Abdolahzadeh Ziabari, S.M. Rozati, Carrier transport and bandgap shift in n-type degenerate ZnO thin films: The effect of band edge nonparabolicity. Physica B 407 (2012) 4512–4517.
http://www.sciencedirect.com/science/article/pii/S0921452612008071
[2] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. –J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98 (2005) 041301.
http://adsabs.harvard.edu/abs/2005JAP....98d1301
[3] J. Wróbel, J. Piechota, Structural properties of ZnO polymorphs. Phys. Stat. Sol. (b) 244(5) (2007) 1538–1543.
http://onlinelibrary.wiley.com/doi/10.1002/pssb.200743399/full
First–Principle Calculation of the Electronic and Optical Properties of Nanolayered ZnO … * 15
[4] C. H. Bates, W. B. White, R. Roy, New High-Pressure Polymorph of Zinc Oxide. Science 137 (1962) 993.
http://adsabs.harvard.edu/abs/1962Sci...137..993B
[5] F. G. Kuang, X.Y. Kuang, Sh.Y. Kang, M.M. Zhong, A.J. Mao, A first principle study of pressure-induced effects on phase transitions, band structures and elasticity of zinc oxide. Mat. Sci. Semicon. Proc. 23 (2014) 63–71.
https://www.infona.pl/resource/bwmeta1.element.elsevier-d025c885-9ca3-3a80-9b8c-c3e2004b4a24
[6] M. P. Molepo, D.P. Joubert, Computational study of the structural phases of ZnO. Phys. Rev. B 84 (2011) 094110.
https://journals.aps.org/prb/pdf/10.1103/PhysRevB.84.094110
[7] M. Kalay, H.H. Kart, S. Özdemir Kart, T. Çağın, Elastic properties and pressure induced transitions of ZnO polymorphs from first-principle calculations. J. Alloys. Compd.484 (2009) 431–438.
http://www.sciencedirect.com/science/article/pii/S0925838809008548
[8] X. Si, Y. Liu, W. Lei, J. Xu,W. Du, J. Lin, T. Zhou, L.I. Zheng, First-principles investigation on the optoelectronic performance of Mg doped and Mg–Al co-doped ZnO. Materials and Design 93 (2016) 128–132.
http://www.sciencedirect.com/science/article/pii/S0264127515308923
[9] A. A. Peyghan, M. Noei, The alkali and alkaline earth metal doped ZnO nanotubes: DFT studies. B 432(2014) 105-110.
http://www.sciencedirect.com/science/article/pii/S0921452613006029
[10] H.I. Berrezoug, A.E. Merad, A. Zerga, Z.Sari Hassoun, Simulation and Modeling of Structural Stability, Electronic Structure and Optical Properties of ZnO. Energy Procedia 74 ( 2015 ) 1517–1524.
http://www.sciencedirect.com/science/article/pii/S1876610215014794
[11] J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett. 100 (2008) 136406.
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.136406
[12] G.Y. Huang, C.Y. Wang, J.T. Wang, Detailed check of the LDA + U and GGA + U corrected method for defect calculations in wurtzite ZnO. Comput. Phys. Commun. 183 (2012) 1749–1752.
http://www.sciencedirect.com/science/article/pii/S0010465512001221?via%3Dihub
[13] A. D. Becke and E. R. Johnson, A simple effective potential for exchange. J. Chem. Phys. 124 (2006) 221101.
http://aip.scitation.org/doi/10.1063/1.2213970
[14] F. Tran, P. Blaha, Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential. Phys Rev Lett 102 (2009) 226401.
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.102.226401
[15] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Austria, 2014.
http://susi.theochem.tuwien.ac.at/reg_user/textbooks/usersguide.pdf
[16] A. Thilagam, D. Simpson, A. Gerson, A first-principles study of the dielectric properties of TiO2polymorphs.J. Phys.: Condens. Matter 23 (2) (2011) 025901.
http://iopscience.iop.org/article/10.1088/0953-8984/23/2/025901/meta
[17] F.S. Decremp, F. Datchi, A.M. Saitta, A. Polian, S. Pascarelli, A. DiCicco, J.P. Itié, J,F. Baudelet, Local structure of condensed zinc oxide. Phys. Rev. B 68 (2003) 104101.
http://www-ext.impmc.upmc.fr/~decremps/SObject/Prb-5.pdf
[18] S. Desgreniers, Structural and compressive parameters High-density phases of ZnO. Phys. Rev. B 58 (1998) 14102–14105.
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.58.14102
[19] H. Karzel, W. Potzel, M. Köfferlein, W. Schiessl, M. Steiner, U. Hiller, G.M. Kalvius, D.W. Mitchell, T.P. Das, P. Blaha, K. Schwarz, M.P. Pasternak, Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures. Phys. Rev. B 53 (1996) 11425–11438.
https://www.ncbi.nlm.nih.gov/pubmed/9982760
[20] A. Abdolahzadeh Ziabari, F.E. Ghodsi, Synthesis and characterization of nanocrystalline CdZnO thin films prepared by sol-gel dip-coating process. Thin Solid Films 520 (2011) 1228–1232.
http://www.sciencedirect.com/science/article/pii/S0040609011013526
[21] A.A. Ashrafi, A.Ueta, H. Kumano, I. Suemune, Role of ZnS buffer layers in growth of zincblende ZnO on GaAs substrates by metalorganic molecular-beam epitaxy. J. Cryst. Growth 221 (2000) 435–439.
http://www.sciencedirect.com/science/article/pii/S0022024800007326
[22] U.H. Bakhtiar, R.Ahmed, R. Khenata, M. Ahmed, R. Hussain, A first-principles comparative study of exchange and correlation potentials for ZnO. Mater. Sci. Semicon. Proc.16 (2013)1162–1169.
http://www.sciencedirect.com/science/article/pii/S1369800112002909
[23] M. Usuda, N. Hamada, All-electron GW Application to wurtzite ZnO calculation based on the LAPW method. Phys. Rev. B 66 (2002) 125101.
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.66.125101
[24] A. Schleife, F. Fuchs, J. Furthmüller, F. Bechstedt, First-principles studies of ground- and excited-state properties of MgO, ZnO, and CdO polymorphs. Phys. Rev. B 73 (2006) 245212.
https://arxiv.org/abs/cond-mat/0604480
[25] Y.Z. Zhu, G.D. Chen, H. Ye, Electronic structure and phase stability of MgO, ZnO, CdO, and related ternary alloys. Phys. Rev. B 77 (2008) 245209.
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.77.245209
[26] A. Segura, J.A. Sans, F.J. Manjon, A. Munoz, M.J. Herrera–Cabrera, Theoretical Study on the Origins of the Gap Bowing in MgxZn1–xO Alloys. Appl. Phys. Lett. 83 (2003) 278–280.
http://file.scirp.org/Html/3-2190016_21382.htm
[27] Y.N. Xu, W.Y. Ching, Electronic, optical, and structural properties of some wurtzite crystals. Phys. Rev. B 48 (1993) 4335–4351.
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.48.4335
[28] C.-Y. Ren, S.-H. Chiou, C.-S. Hsue, Ga-doping effects on electronic and structural properties of wurtzite ZnO. Physica B 349 (2004) 136.
http://www.sciencedirect.com/science/article/pii/S0921452604002029
[29] M. Oshikiri, K. Tanehaka, T. Asano, G. Kido, Far-infrared cyclotron resonance of wide-gap semiconductors using pulsed high magnetic fields. Physica B 216 (1996) 351.
http://www.sciencedirect.com/science/article/pii/0921452695005153
[30] Z. Charifi, H. Baaziz, A.H. Reshak, Phys. Ab-initio investigation of structural, electronic and optical properties for three phases of ZnO compound. Status Solidi B 244 (2007) 3154–3167.
http://onlinelibrary.wiley.com/doi/10.1002/pssb.200642471
[31] J.E. Jaffe, R. Pandey, A.B. Kunz, Electronic structure of the rocksalt-structure semiconductors ZnO and CdO. Phys. Rev. B 43(17) (1991) 14030–14034.
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.43.14030
[32] X. Si, Y. Liu,W. Lei, J. Xu,W. Du, J. Lin, T. Zhou, L. Zheng, First-principles investigation on the optoelectronic performance of Mg doped and Mg–Al co-doped ZnO. Mater. Des. 93 (2016) 128–132.
http://www.sciencedirect.com/science/article/pii/S0264127515308923
[33] E. Amoupour, A. Abdolahzadeh Ziabari, H. Andarva, F.E. Ghodsi, Influence of air/N2 treatment on the structural, morphological and optoelectronic traits of nanostructured ZnO:Mn thin films. Superlattices Microstruct. 65 (2014) 332–343.
http://www.sciencedirect.com/science/article/pii/S0749603613004096
[34] S. Zh. Karazhanov, P. Ravindran, A. Kjekshus, H. Fjellvåg, B. G. Svensson, Electronic structure and optical properties of ZnX (X=O, S, Se, Te). Phys. Rev. B 75 (2007) 155104.
https://arxiv.org/abs/0705.2550