.[1] E.M. Purcell, Spontaneous emission probabilities at radio frequency, Phys. Rev,
(1946) 69-681.
[2] A. Mohammadi, V.Sandoghdar, M. Agio, Gold nanorods and nanospheroids for
enhancing spontaneous emission, New Journal of Physics, (2008) 1-14.
[3] S.A. Maier, Plasmonics Fundamentals and Applications, Springer, New York,
(2007).
[4] L. Rogobete, F. Kaminski, M. Agio, V. Sandoghdar, Design of plasmonic
nanoantennae for enhancing spontaneous emission. Optics Letters, (2007) 1623-
1625.
34 * Journal of Optoelectronical Nanostructures Autumn 2016 / Vol. 1, No. 3
[5] A. Mohammadi, V. Sandoghdar, M. Agio, Gold, Copper, Silver and Aluminum
Nanoantennas to Enhance Spontaneous Emission, Journal of Computational and
Theoretical Nanoscience, (2009) 2024-2030.
[6] L. Novotny, and B. Hecht, Principles of Nano-Optics, Cambridge University Press,
Cambridge. England, (2006).
[7] Ch. Hafner, Post-modern Electromagnetics, John Wiley & Sons, Chichester, (1999).
[8] D. Sullivan, Electromagnetic Simulation Using the FDTD Method, IEEE Press,
(2000).
[9] A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-difference
Time-domain Method, Artech House, Norwood, (2005).
[10] A.K, Aziz and I.M. BabuSka, Mathematical Foundations of the Finite Element
Method with Applications to Partial Differential Equations, Academic Press, New
York, (1972).
[11] L. Rogobete, C. Henkel, Spontaneous emission in a subwavelength environment
characterized by boundary integral equations, Physical Review A, (2004) 1-10.
[12] M.N. Vesperinas, Scattering and Diffraction in Physical Optics, John Wiley and
Sons, New York, (1991).
[13] C.mF.Bohren and D.R.Huffman, Absorption and Scattering by Small Particles.
Wiley, (1998) 194-208.