[1] R. Soroush, A.L.I. Koochi, A.S. Kazemi, M. Abadyan, Modeling the Effect of Van Der Waals Attraction on the Instability of Electrostatic Cantilever and Doubly-Supported Nano-Beams Using Modified Adomian Method, International Journal of Structural Stability and Dynamics, 12 (2012) 1250036.
[2] R. Ansari, R. Gholami, M.F. Shojaei, V. Mohammadi, S. Sahmani, Surface stress effect on the pull-in instability of circular nanoplates, Acta Astronautica, 102 (2014) 140-150.
[3] M.A. Cullinan, R.M. Panas, C.M. DiBiasio, M.L. Culpepper, Scaling electromechanical sensors down to the nanoscale, Sensors and Actuators A: Physical, 187 (2012) 162-173.
[4] S. Demoustier, E. Minoux, M. Le Baillif, M. Charles, A. Ziaei, Review of two microwave applications of carbon nanotubes: nano-antennas and nano-switches, Comptes Rendus Physique, 9 (2008) 53-66.
[5] K. Kiani, Q. Wang, On the interaction of a single-walled carbon nanotube with a moving nanoparticle using nonlocal Rayleigh, Timoshenko, and higher-order beam theories, European Journal of Mechanics - A/Solids, 31 (2012) 179-202.
[6] H.S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, E. Peiner, Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection, Sensors and Actuators B: Chemical, 189 (2013) 146-156.
[7] M.-O. Kim, K. Lee, H. Na, D.-S. Kwon, J. Choi, J.-I. Lee, D.-H. Baek, J. Kim, Highly sensitive cantilever type chemo-mechanical hydrogen sensor based on contact resistance of self-adjusted carbon nanotube arrays, Sensors and Actuators B: Chemical, 197 (2014) 414-421.
[8] M. Liao, Z. Rong, S. Hishita, M. Imura, S. Koizumi, Y. Koide, Nanoelectromechanical switch fabricated from single crystal diamond: Experiments and modeling, Diamond and Related Materials, 24 (2012) 69-73.
[9] L.-L. Ke, Y.-S. Wang, J. Yang, S. Kitipornchai, Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory, Journal of Sound and Vibration, 331 (2012) 94-106.
[10] D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, 51 (2003) 1477–1508.
[11] A.W. McFarland, J.S. Colton, Role of material microstructure in plate stiffness with relevance to microcantilever sensors, Journal of Micromechanics and Microengineering, 15 (2005) 1060–1067.
[12] M. Mohammad-Abadi, A.R. Daneshmehr, Size dependent buckling analysis of microbeams based on modified couple stress theory with high order theories and general boundary conditions, International Journal of Engineering Science, 74 (2014) 1-14.
[13] A. Koochi, A.S. Kazemi, Y. Tadi Beni, A. Yekrangi, M. Abadyan, Theoretical study of the effect of Casimir attraction on the pull-in behavior of beam-type NEMS using modified Adomian method, Physica E: Low-dimensional Systems and Nanostructures, 43 (2010) 625-632.
[14] A. Farrokhabadi, N. Abadian, R. Rach, M. Abadyan, Theoretical modeling of the Casimir force-induced instability in freestanding nanowires with circular cross-section, Physica E: Low-dimensional Systems and Nanostructures, 63 (2014) 67-80.
[15] A. Farrokhabadi, R. Rach, M. Abadyan, Modeling the static response and pull-in instability of CNT nanotweezers under the Coulomb and van der Waals attractions, Physica E: Low-dimensional Systems and Nanostructures, 53 (2013) 137-145.
[16] E. Yazdanpanahi, A. Noghrehabadi, M. Ghalambaz, Pull-in instability of electrostatic doubly clamped nano actuators: Introduction of a balanced liquid layer (BLL), International Journal of Non-Linear Mechanics, 58 (2014) 128-138.
[17] H. M. Sedighi, F. Daneshmand, J. Zare, The influence of dispersion forces on the dynamic pull-in behavior of vibrating nano-cantilever based NEMS including fringing field effect. Archives of Civil and Mechanical Engineering, (In Press). DOI: 10.1016/j.acme.2014.01.004.
[18] A. Gusso, G.J. Delben, Dispersion force for materials relevant for micro and nanodevices fabrication, Journal of Physics D, Applied Physics, 41 (2008) 175405.
[19] A. Koochi, A.S. Kazemi, A. Noghrehabadi, A. Yekrangi, M. Abadyan, New approach to model the buckling and stable length of multi walled carbon nanotube probes near graphite sheets, Materials & Design, 32 (2011) 2949-2955.
[20] E.M. Abdel-Rahman, M.I. Younis, A.H. Nayfeh, Characterization of the mechanical behavior of an electrically actuated microbeam, Journal of Micromechanics and Microengineering 12 (2002) 759–766.
[21] L.X. Zhang, Y.P. Zhao, Electromechanical model of RF MEMS switches, Microsyst. Technol., 9 (2003) 420-426.
[22] F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., 39 (2002) 2731–2743.
[23] S.K. Park, X.L. Gao, Bernoulli–Euler beam model based on a modified couple stress theory, J. Micromech. Microeng., 16 (2006) 2355–2359.
[24] Y. Hayamizu, T. Yamada, K. Mizuno, R.C. Davis, D.N. Futaba, M. Yumura, K. Hata, Integrated three-dimensional microelectromechanical devices from processable carbon nanotube wafers, Nature Nanotechnology, 3 (2008) 289–294.
[25] F.P. Beer, J.H. Johnston, J.T. Dewolf, D.F. Mazurek, Mechanics of Material, 5th ed., Mc-Graw Hill Companies, New York, 2009.
[26] A. Ramezani, A. Alasty, J. Akbari, Pull-in parameters of cantilever type nanomechanical switches in presence of Casimir force, Nonlinear Analysis: Hybrid Systems, 1 (2007) 364-382.
[27] A. Ramezani, A. Alasty, J. Akbari, Closed-form solutions of the pull-in instability in nano-cantilevers under electrostatic and intermolecular surface forces, International Journal of Solids and Structures, 44 (2007) 4925-4941.
[28] R.C. Batra, M. Porfiri, D. Spinello, Vibrations of narrow microbeams predeformed by an electric field, Journal of Sound and Vibration, 309 (2008) 600-612.
[29] R.C. Batra, M. Porfiri, D. Spinello, Electromechanical model of electrically actuated narrow microbeams, J Microelectromech Syst, 15 (2006) 1175–1189.
[30] M. Moghimi Zand, M.T. Ahmadian, Application of homotopy analysis method in studying dynamic pull-in instability of microsystems, Mechanics Research Communications, 36 (2009) 851-858.
[31] R.C. Batra, M. Porfiri, D. Spinello, Vibrations and pull-in instabilities of microelectromechanical von Kármán elliptic plates incorporating the Casimir force, Journal of Sound and Vibration, 315 (2008) 939-960.
[32] H.A. Tilmans, R. Legtenberg, Electrostatically driven vacuum-encapsulated polysilicon resonators: Part II. Theory and performance, Sensors Actuators A, 45 (1994) 67–84.
[33] J.H. Kuang, C.-J. Chen, Dynamic characteristics of shaped micro-actuators solved using the differential quadrature method, Journal of Micromechanics and Microengineering, 14 (2004) 647-655.