A Robust Single Layer QCA Decoder Using a Novel Fault-Tolerant Three-Input Majority Gate

Document Type : Articles


1 Department of Computer Engineering, Higher Educational Complex of Saravan, Saravan, Iran.

2 Department of Computer Engineering, Sharif University of Technology, Tehran, Iran


Quantum-dot Cellular Automata (QCA) is an
emerging technology and one of the suitable alternatives
to conventional CMOS technology. Designing efficient
basic logic circuits like decoders is an open research topic
in this emerging technology. As reliability is also the most
important issue in QCA technology circuit design due to
its susceptibility to faults occurring during chemical
fabrication, we design an efficient coplanar robust 2-to-4
decoder, employing a novel fault-tolerant three-input
majority gate. Our proposed majority gate is designed
with 11 simple QCA cells. The area and energy
consumptions of the proposed majority gate is 0.01 μm2
and 1.49×2-2 MeV, respectively. The presented majority
gate has also 71% and 100% tolerance against single-cell
omission and extra-cell deposition defects, respectively,
and it has a proper tolerance against cell displacement and
misalignment defects. The novel robust 2-to-4 decoder is
also designed using the proposed majority gate. The
simulation results show that the presented decoder is more
efficient in comparison to previous designs.


[1] Mack, C. A. Fifty years of Moore's law. IEEE Transactions on semiconductor manufacturing, 24(2) (2011) 202-207. Available:http://www.intel .in/conte nt/www/in/en/silic on-innov ation s/moore s-law-techn ology .html. Accessed 20 Feb 2020
[2] Zhang H et al .Spintronic processing unit within voltage-gated spin hall effect MRAMs. IEEETrans Nanotechnol 18 (2019) 473–483. Available:https://ieeexplore.ieee.org/document/8706951
[3] Babaie S, Sadoghifar A, Bahar. AN Design of an efficient multilayer arithmetic logic unit in quantum-dot cellular automata (QCA). IEEE Trans Circuits Syst II Express Briefs 66(6) (2018) 963–967. Available:https://ieeexplore.ieee.org/document/8480639
[4] Seyedi S, Ghanbari A, Navimipour NJ, New design of a 4-bit ripple carry adder on a nanoscale quantum-dot cellular automata. Mosc Univ Phys Bull 74(5) (2019) 494–501. Available:
[5] Seyedi S, Darbandi M, Navimipour NJ, Designing an efficient fault tolerance D-latch based on quantum-dot cellular automata nanotechnology. Optik 185 (2019) 827–837. Available:
[6] Fam SR, Navimipour NJ .Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata. Photon Netw Commun 37(1) (2019) 120–130. Available:
https://link.springer.com/article/10.1007/s11107-018-0801-9 [7] Rigi, R., Navi, K., & Sharifi, H. Research Paper PhC-based Majority Gate using a nonlinear directional coupler. Journal of Optoelectronical Nanostructures, 6(4) (2021) 21-32.
[8] Seyedi S, Navimipour NJ .An optimized three-level design of decoder based on nanoscale quantum-dot cellular automata. Int J Theor Phys 57(7) (2018) 2022–2033. Availabl:
[9] Seyedi S, Navimipour NJ. Design and evaluation of a new structure for fault-tolerance fulladder based on quantum-dot cellular automata. Nano Commun Netw 16 (2018) 1–9. Available:
[10] Gadim MR, Navimipour NJ. A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst Technol 24 (2018) 1–11. Available:
https://link.springer.com/article/10.1007/s00542-017-3502-x [11] Safoev, N., & Jeon, J. C. A novel controllable inverter and adder/subtractor in quantum-dot cellular automata using cell interaction based XOR gate. Microelectronic Engineering, 222 (2020) 111197. Available:
[12] Lent CS et al. Quantum cellular automata. Nanotechnology 4(1) (1993) 49. Available:
[13] Tahoori MB et al. Defects and faults in quantum cellular automata at nano scale. In: 22nd IEEE VLSI Test Symposium. Proceedings. IEEE (2004). Available:
[14] Ahmadpour S-S, Mosleh M, Heikalabad SR. An efficient fault-tolerant arithmetic logic unit using a novel fault-tolerant 5-input majority gate in quantum-dot cellular automata. Comput Electr Eng 82 (2020) 106548. Available: https://doi.org/10.1016/j.compeleceng.2020.106548
[15] Momenzadeh M et al. Quantum cellular automata: new defects and faults for new devices. In: 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings. IEEE10. Available:
[16] Seyedi S, Navimipour NJ. An optimized design of full adder based on nanoscale quantum-dot cellular automata. Opt Int J Light Electron Opt 158 (2017) 243–256. Available: https://doi.org/10.1016/j.ijleo.2017.12.062
[17] Lent CS, Tougaw PD. A device architecture for computing with quantum dots. Proc IEEE 85(4) (1997) 541–557. Available:
[18] Ahmadpour SS, Mosleh M, Rasouli Heikalabad S. Robust QCA full-adders using an efficient fault-tolerant five-input majority gate. Int J Circuit Theory Appl 47 (2019) 1037–1056. Available:
[19] Hosseinzadeh H, Heikalabad SR. A novel fault tolerant majority gate in quantum-dot cellular automata to create a revolution in design of fault tolerant nanostructures, with physical verification. Microelectron Eng 192 (2018) 52–60. Available: https://doi.org/10.1016/j.mee.2018.01.019
[20] Huang J, Momenzadeh M, Lombardi F. On the tolerance to manufacturing defects in molecular QCA tiles for processing-by-wire. J Electron Test 23(2) (2007) 163–174. Available:
[21] Walus K et al. QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1) (2004) 26–31. Available: https://ieeexplore.ieee.org/document/1278264
[22] Ahmadpour S-S, Mosleh M, Heikalabad SR. A revolution in nanostructure designs by proposing a novel QCA full-adder based on optimized 3-input XOR. Physica B 550 (2018) 383–392. Available:
[23] Ahmadpour SS, Mosleh M. A novel ultra-dense and low-power structure for fault-tolerant three-input majority gate in QCA technology. Concurr Comput Pract Exp 32(5) (2019) e5548. Available:
[24] Moghimizadeh, T. and Mosleh, M. A novel design of fault-tolerant RAM cell in quantum-dot cellular automata with physical verification. The Journal of Supercomputing, 75(9) (2019) pp.5688-5716. Available:
[25] Ahmadpour, S.S., Mosleh, M. and Rasouli Heikalabad, S. The design and implementation of a robust single-layer QCA ALU using a novel fault-tolerant three-input majority gate. Journal of Supercomputing, 76(12) (2020). Available:
[26] Sun, M., Lv, H., Zhang, Y. and Xie, G. The fundamental primitives with fault-tolerance in quantum-dot cellular automata. Journal of Electronic Testing, 34(2) (2018) pp.109-122. Available:
[27] Foroutan, S.A.H., Sabbaghi-Nadooshan, R., Mohammadi, M. and Tavakoli, M.B. Investigating multiple defects on a new fault-tolerant three-input QCA majority gate. The Journal of Supercomputing, (2021) 1-21. Available: https://link.springer.com/article/10.1007/s11227-020-03567-6
[28] Wang, X., Xie, G., Deng, F., Quan, Y. and Lü, H. Design and comparison of new fault-tolerant majority gate based on quantum-dot cellular automata. Journal of Semiconductors, 39(8) (2018) p.085001. Available:
[29] Kumar, D. and Mitra, D. Design of a practical fault-tolerant adder in QCA. Microelectronics Journal, 53 (2016) 90-104. Available:
[30] Torres, F.S., Wille, R., Niemann, P. and Drechsler, R. An energy-aware model for the logic synthesis of quantum-dot cellular automata. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(12) (2018) 3031-3041. Available:
https://ieeexplore.ieee.org/abstract/document/8246526 [31] Pourtajabadi, R., & Nayeri, M. A novel design of a multi-layer 2: 4 decoder using quantum-dot cellular automata. Journal of Optoelectronical Nanostructures, 4(1) (2019) 39-50. Available:
[32] H. Balijepalli, and M. Niamat. Design of a nanoscale quantum-dot cellular automata configurable logic block for FPGAs. Circuits and Systems (MWSCAS), 2012 IEEE 55th International Midwest Symposium on. IEEE, (2012) 622-625. Available: https://ieeexplore.ieee.org/document/6292097/
[33] P. P. Chougule, B. Sen, and T. D. Dongale. Realization of processing Inmemory computing architecture using quantum dot cellular automata. Microprocessors and Microsystems, 52, (Jul. 2017) 49-58. Available:
[34] Kianpour, M., & Sabbaghi-Nadooshan, R. A conventional design and simulation for CLB implementation of an FPGA quantum-dot cellular automata. Microprocessors and Microsystems, 38(8) (2014) 1046-1062. Available:https://doi.org/10.1016/j.micpro.2014.08.001 [35] Sabbaghi-Nadooshan, R. A novel quantum-dot cellular automata CLB of FPGA. Journal of Computational Electronics, 13(3) (2014) 709-725. Available: https://link.springer.com/article/10.1007/s10825-014-0590-z [36] Kumar, M., & Sasamal, T. N. An Optimal design of 2-to-4 Decoder circuit in coplanar Quantum-dot cellular automata. Energy Procedia, 117 (2017) 450-457. Available:https://doi.org/10.1016/j.egypro.2017.05.170 [37] Sherizadeh, R., & Navimipour, N. J. Designing a 2-to-4 decoder on nanoscale based on quantum-dot cellular automata for energy dissipation improving. Optik, 158 (2018) 477-489. Available:
[38] K. Makanda, and J. C. Jeon. Combinational Circuit Design Based on Quantum-Dot Cellular Automata. International Journal of Control and Automation 7(6). (Jun. 2014). 369-378.
Available: http://article.nadiapub.com/IJCA/vol7_no6/34.pdf [39] Majeed, A. H., Zainal, M. S. B., Alkaldy, E., & Nor, D. M. Full adder circuit design with novel lower complexity XOR gate in QCA technology. Transactions on Electrical and Electronic Materials, 21(2) (2020) 198-207. Available:
https://link.springer.com/article/10.1007/s42341-019-00166-y [40] Dysart, T. J. Modeling of electrostatic QCA wires. IEEE transactions on nanotechnology, 12(4) (2013) 553-560. Available:
https://ieeexplore.ieee.org/document/6497528/ [41] Danehdaran, F., Khosroshahy, M. B., Navi, K., & Bagherzadeh, N. Design and power analysis of new coplanar one-bit full-adder cell in quantum-dot cellular automata. Journal of Low Power Electronics, 14(1) (2018) 38-48. DOI:10.1166/jolpe.2018.1529 [42] Shin, S. H., Jeon, J. C., & Yoo, K. Y. Wire-crossing technique on quantum-dot cellular automata. In NGCIT2013, the 2nd international conference on next generation computer and information technology (2013, September) ( 52-57). Available:
https://www.semanticscholar.org/paper/Wire-Crossing-Technique-on-Quantum-Dot-Cellular-Shin [43] Ahmadpour, S. S., & Mosleh, M. A novel fault-tolerant multiplexer in quantum-dot cellular automata technology. The Journal of Supercomputing, 74(9) (2018) 4696-4716. Available:
https://link.springer.com/article/10.1007/s11227-018-2464-9 [44] Ahmadpour, S. S., & Mosleh, M. New designs of fault-tolerant adders in quantum-dot cellular automata. Nano Communication Networks, 19 (2019) 10-25. Available: https://doi.org/10.1016/j.nancom.2018.11.001 [45] Mehdizadeh, F., & Alipour-Banaei, H. All optical 1 to 2 decoder based on photonic crystal ring resonator. Journal of Optoelectronical Nanostructures, 2(2) (2017) 1-10. Available:http://jopn.marvdasht.iau.ir/article_2419_91e8a15036a4eb30e9d9f32002542690.pdf [46] Ahmadpour, S. S., Mosleh, M., & Asadi, M. A. The development of an efficient 2-to-4 decoder in quantum-dot cellular automata. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 45(2) (2021) 391-405. Available:
https://link.springer.com/article/10.1007/s40998-020-00375-9 [47] Nayeri, M., Keshavarzian, P., & Nayeri, M. A Novel Design of Penternary Inverter Gate Based on Carbon Nano Tube. Journal of Optoelectronical Nanostructures, 3(1) (2018) 15-26. Available:
http://jopn.marvdasht.iau.ir/article_2820.html [48] Karimi Moghadam, D., & Solookinejad, G. Implication of quantum effects on non-linear propagation of electron plasma solitons. Journal of Optoelectronical Nanostructures, 5(3) (2020) 59-70. Available: