[1] Mack, C. A. Fifty years of Moore's law. IEEE Transactions on semiconductor manufacturing, 24(2) (2011) 202-207. Available:http://www.intel .in/conte nt/www/in/en/silic on-innov ation s/moore s-law-techn ology .html. Accessed 20 Feb 2020
[2] Zhang H et al .Spintronic processing unit within voltage-gated spin hall effect MRAMs. IEEETrans Nanotechnol 18 (2019) 473–483. Available:https://ieeexplore.ieee.org/document/8706951
[3] Babaie S, Sadoghifar A, Bahar. AN Design of an efficient multilayer arithmetic logic unit in quantum-dot cellular automata (QCA). IEEE Trans Circuits Syst II Express Briefs 66(6) (2018) 963–967. Available:https://ieeexplore.ieee.org/document/8480639
[4] Seyedi S, Ghanbari A, Navimipour NJ, New design of a 4-bit ripple carry adder on a nanoscale quantum-dot cellular automata. Mosc Univ Phys Bull 74(5) (2019) 494–501. Available:
https://link.springer.com/article/10.3103/S0027134919050126
[5] Seyedi S, Darbandi M, Navimipour NJ, Designing an efficient fault tolerance D-latch based on quantum-dot cellular automata nanotechnology. Optik 185 (2019) 827–837. Available:
https://doi.org/10.1016/j.ijleo.2019.03.029
[6] Fam SR, Navimipour NJ .Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata. Photon Netw Commun 37(1) (2019) 120–130. Available:
https://link.springer.com/article/10.1007/s11107-018-0801-9 [7] Rigi, R., Navi, K., & Sharifi, H. Research Paper PhC-based Majority Gate using a nonlinear directional coupler. Journal of Optoelectronical Nanostructures, 6(4) (2021) 21-32.
Available:http://jopn.marvdasht.iau.ir/article_5039_9a59d5bab7d8d307cf735e5de0becca1.pdf
[8] Seyedi S, Navimipour NJ .An optimized three-level design of decoder based on nanoscale quantum-dot cellular automata. Int J Theor Phys 57(7) (2018) 2022–2033. Availabl:
https://link.springer.com/article/10.1007/s10773-018-3728-0
[9] Seyedi S, Navimipour NJ. Design and evaluation of a new structure for fault-tolerance fulladder based on quantum-dot cellular automata. Nano Commun Netw 16 (2018) 1–9. Available:
https://doi.org/10.1016/j.nancom.2018.02.002
[10] Gadim MR, Navimipour NJ. A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst Technol 24 (2018) 1–11. Available:
https://link.springer.com/article/10.1007/s00542-017-3502-x [11] Safoev, N., & Jeon, J. C. A novel controllable inverter and adder/subtractor in quantum-dot cellular automata using cell interaction based XOR gate. Microelectronic Engineering, 222 (2020) 111197. Available:
https://doi.org/10.1016/j.mee.2019.111197
[12] Lent CS et al. Quantum cellular automata. Nanotechnology 4(1) (1993) 49. Available:
https://link.springer.com/chapter/10.1007/978-1-4615-0437-5_10
[13] Tahoori MB et al. Defects and faults in quantum cellular automata at nano scale. In: 22nd IEEE VLSI Test Symposium. Proceedings. IEEE (2004). Available:
https://ieeexplore.ieee.org/document/1299255/
[14] Ahmadpour S-S, Mosleh M, Heikalabad SR. An efficient fault-tolerant arithmetic logic unit using a novel fault-tolerant 5-input majority gate in quantum-dot cellular automata. Comput Electr Eng 82 (2020) 106548. Available: https://doi.org/10.1016/j.compeleceng.2020.106548
[15] Momenzadeh M et al. Quantum cellular automata: new defects and faults for new devices. In: 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings. IEEE10. Available:
https://ieeexplore.ieee.org/document/1303234
[16] Seyedi S, Navimipour NJ. An optimized design of full adder based on nanoscale quantum-dot cellular automata. Opt Int J Light Electron Opt 158 (2017) 243–256. Available: https://doi.org/10.1016/j.ijleo.2017.12.062
[17] Lent CS, Tougaw PD. A device architecture for computing with quantum dots. Proc IEEE 85(4) (1997) 541–557. Available:
https://ieeexplore.ieee.org/document/573740
[18] Ahmadpour SS, Mosleh M, Rasouli Heikalabad S. Robust QCA full-adders using an efficient fault-tolerant five-input majority gate. Int J Circuit Theory Appl 47 (2019) 1037–1056. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cta.2634
[19] Hosseinzadeh H, Heikalabad SR. A novel fault tolerant majority gate in quantum-dot cellular automata to create a revolution in design of fault tolerant nanostructures, with physical verification. Microelectron Eng 192 (2018) 52–60. Available: https://doi.org/10.1016/j.mee.2018.01.019
[20] Huang J, Momenzadeh M, Lombardi F. On the tolerance to manufacturing defects in molecular QCA tiles for processing-by-wire. J Electron Test 23(2) (2007) 163–174. Available:
https://link.springer.com/article/10.1007/s10836-006-0548-6
[21] Walus K et al. QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1) (2004) 26–31. Available: https://ieeexplore.ieee.org/document/1278264
[22] Ahmadpour S-S, Mosleh M, Heikalabad SR. A revolution in nanostructure designs by proposing a novel QCA full-adder based on optimized 3-input XOR. Physica B 550 (2018) 383–392. Available:
https://doi.org/10.1016/j.physb.2018.09.029
[23] Ahmadpour SS, Mosleh M. A novel ultra-dense and low-power structure for fault-tolerant three-input majority gate in QCA technology. Concurr Comput Pract Exp 32(5) (2019) e5548. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5548
[24] Moghimizadeh, T. and Mosleh, M. A novel design of fault-tolerant RAM cell in quantum-dot cellular automata with physical verification. The Journal of Supercomputing, 75(9) (2019) pp.5688-5716. Available:
https://link.springer.com/article/10.1007/s11227-019-02812-x
[25] Ahmadpour, S.S., Mosleh, M. and Rasouli Heikalabad, S. The design and implementation of a robust single-layer QCA ALU using a novel fault-tolerant three-input majority gate. Journal of Supercomputing, 76(12) (2020). Available:
https://link.springer.com/article/10.1007/s11227-020-03249-3
[26] Sun, M., Lv, H., Zhang, Y. and Xie, G. The fundamental primitives with fault-tolerance in quantum-dot cellular automata. Journal of Electronic Testing, 34(2) (2018) pp.109-122. Available:
https://link.springer.com/article/10.1007/s10836-018-5723-z
[27] Foroutan, S.A.H., Sabbaghi-Nadooshan, R., Mohammadi, M. and Tavakoli, M.B. Investigating multiple defects on a new fault-tolerant three-input QCA majority gate. The Journal of Supercomputing, (2021) 1-21. Available: https://link.springer.com/article/10.1007/s11227-020-03567-6
[28] Wang, X., Xie, G., Deng, F., Quan, Y. and Lü, H. Design and comparison of new fault-tolerant majority gate based on quantum-dot cellular automata. Journal of Semiconductors, 39(8) (2018) p.085001. Available:
https://iopscience.iop.org/article/10.1088/1674-4926/39/8/085001
[29] Kumar, D. and Mitra, D. Design of a practical fault-tolerant adder in QCA. Microelectronics Journal, 53 (2016) 90-104. Available:
https://doi.org/10.1016/j.mejo.2016.04.004
[30] Torres, F.S., Wille, R., Niemann, P. and Drechsler, R. An energy-aware model for the logic synthesis of quantum-dot cellular automata. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(12) (2018) 3031-3041. Available:
https://ieeexplore.ieee.org/abstract/document/8246526 [31] Pourtajabadi, R., & Nayeri, M. A novel design of a multi-layer 2: 4 decoder using quantum-dot cellular automata. Journal of Optoelectronical Nanostructures, 4(1) (2019) 39-50. Available:
http://jopn.marvdasht.iau.ir/article_3384.html
[32] H. Balijepalli, and M. Niamat. Design of a nanoscale quantum-dot cellular automata configurable logic block for FPGAs. Circuits and Systems (MWSCAS), 2012 IEEE 55th International Midwest Symposium on. IEEE, (2012) 622-625. Available: https://ieeexplore.ieee.org/document/6292097/
[33] P. P. Chougule, B. Sen, and T. D. Dongale. Realization of processing Inmemory computing architecture using quantum dot cellular automata. Microprocessors and Microsystems, 52, (Jul. 2017) 49-58. Available:
https://doi.org/10.1016/j.micpro.2017.04.022
[34] Kianpour, M., & Sabbaghi-Nadooshan, R. A conventional design and simulation for CLB implementation of an FPGA quantum-dot cellular automata. Microprocessors and Microsystems, 38(8) (2014) 1046-1062. Available:https://doi.org/10.1016/j.micpro.2014.08.001 [35] Sabbaghi-Nadooshan, R. A novel quantum-dot cellular automata CLB of FPGA. Journal of Computational Electronics, 13(3) (2014) 709-725. Available: https://link.springer.com/article/10.1007/s10825-014-0590-z [36] Kumar, M., & Sasamal, T. N. An Optimal design of 2-to-4 Decoder circuit in coplanar Quantum-dot cellular automata. Energy Procedia, 117 (2017) 450-457. Available:https://doi.org/10.1016/j.egypro.2017.05.170 [37] Sherizadeh, R., & Navimipour, N. J. Designing a 2-to-4 decoder on nanoscale based on quantum-dot cellular automata for energy dissipation improving. Optik, 158 (2018) 477-489. Available:
https://doi.org/10.1016/j.ijleo.2017.12.055
[38] K. Makanda, and J. C. Jeon. Combinational Circuit Design Based on Quantum-Dot Cellular Automata. International Journal of Control and Automation 7(6). (Jun. 2014). 369-378.
Available: http://article.nadiapub.com/IJCA/vol7_no6/34.pdf [39] Majeed, A. H., Zainal, M. S. B., Alkaldy, E., & Nor, D. M. Full adder circuit design with novel lower complexity XOR gate in QCA technology. Transactions on Electrical and Electronic Materials, 21(2) (2020) 198-207. Available:
https://link.springer.com/article/10.1007/s42341-019-00166-y [40] Dysart, T. J. Modeling of electrostatic QCA wires. IEEE transactions on nanotechnology, 12(4) (2013) 553-560. Available:
https://ieeexplore.ieee.org/document/6497528/ [41] Danehdaran, F., Khosroshahy, M. B., Navi, K., & Bagherzadeh, N. Design and power analysis of new coplanar one-bit full-adder cell in quantum-dot cellular automata. Journal of Low Power Electronics, 14(1) (2018) 38-48. DOI:10.1166/jolpe.2018.1529 [42] Shin, S. H., Jeon, J. C., & Yoo, K. Y. Wire-crossing technique on quantum-dot cellular automata. In NGCIT2013, the 2nd international conference on next generation computer and information technology (2013, September) ( 52-57). Available:
https://www.semanticscholar.org/paper/Wire-Crossing-Technique-on-Quantum-Dot-Cellular-Shin [43] Ahmadpour, S. S., & Mosleh, M. A novel fault-tolerant multiplexer in quantum-dot cellular automata technology. The Journal of Supercomputing, 74(9) (2018) 4696-4716. Available:
https://link.springer.com/article/10.1007/s11227-018-2464-9 [44] Ahmadpour, S. S., & Mosleh, M. New designs of fault-tolerant adders in quantum-dot cellular automata. Nano Communication Networks, 19 (2019) 10-25. Available: https://doi.org/10.1016/j.nancom.2018.11.001 [45] Mehdizadeh, F., & Alipour-Banaei, H. All optical 1 to 2 decoder based on photonic crystal ring resonator. Journal of Optoelectronical Nanostructures, 2(2) (2017) 1-10. Available:http://jopn.marvdasht.iau.ir/article_2419_91e8a15036a4eb30e9d9f32002542690.pdf [46] Ahmadpour, S. S., Mosleh, M., & Asadi, M. A. The development of an efficient 2-to-4 decoder in quantum-dot cellular automata. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 45(2) (2021) 391-405. Available:
https://link.springer.com/article/10.1007/s40998-020-00375-9 [47] Nayeri, M., Keshavarzian, P., & Nayeri, M. A Novel Design of Penternary Inverter Gate Based on Carbon Nano Tube. Journal of Optoelectronical Nanostructures, 3(1) (2018) 15-26. Available:
http://jopn.marvdasht.iau.ir/article_2820.html [48] Karimi Moghadam, D., & Solookinejad, G. Implication of quantum effects on non-linear propagation of electron plasma solitons. Journal of Optoelectronical Nanostructures, 5(3) (2020) 59-70. Available:
http://jopn.marvdasht.iau.ir/article_4404.html