A simulation study around investigating the effect of polymers on the structure and performance of a perovskite solar cell

Document Type : Articles


1 Department of Chemical Engineering, University of Tabriz, Tabriz, Iran

2 Department of Physics, Faculty of Art & Science, University of Sakarya, Sakarya,Turkey


Polymers are a very vast classification of materials that
possess a lot of applications in various industries. For
instance, they have application in structure modification
of the perovskite solar cells (PSCs). Polymers’
application in perovskite solar cells can be divided into
their usage as hole-transporting materials (HTMs) and
the ultrathin interfaces between hole transporting
materials and the perovskite layer. In the present
research, we tried to highlight this application from the
simulation perspective using SCAPS-1D software. For
this purpose, this study investigates the effect of using
different polymeric HTMs and interfaces from the
photovoltaic parameters view. The total PSC structure
was in the form of Au (Back contact)/ HTM/ polymeric
Interface (if there are)/ CH3NH3PbI3 (absorber)/ TiO2
(Electron Transporting Material: ETM)/FTO (counter
electrode). Results represented the best hole transporting
material and interface as PEDOT:PSS and P3HT layers.
The final efficiency was obtained at 18.77% with the
optimal mentioned layers’ materials.


[1] S. Cichosz, A. Masek, and M. Zaborski. Polymer-based sensors: A review. Polymer testing. [online]. 67 (2018, May.) 342-348.
Available: https://doi.org/10.1016/j.polymertesting.2018.03.024
[2] W. Hou, Y. Xiao, G. Han, and J.-Y. Lin. The applications of polymers in solar cells: A review. Polymers. [online]. 11(1) (2019, Jan.) 143. Available: https://doi.org/10.3390/polym11010143.
[3] G. Li, R. Zhu, and Y. Yang. Polymer solar cells. Nature photonics. [online]. 6(3) (2012, Feb) 153-161.
Available: https://doi.org/10.1038/nphoton.2012.11.
[4] L.-B. Huang et al. Interface engineering of perovskite solar cells with multifunctional polymer interlayer toward improved performance and stability. Journal of Power Sources. [online]. 378 (2018, Feb.) 483-490. Available: https://doi.org/10.1016/j.jpowsour.2017.12.082.
[5] M. Asghar, J. Zhang, H. Wang, and P. Lund. Device stability of perovskite solar cells–A review. Renewable and Sustainable Energy Reviews. [online]. 77 (2017, Sep.) 131-146.
Available: https://doi.org/10.1016/j.rser.2017.04.003.
[6] D. Wang, M. Wright, N. K. Elumalai, and A. Uddin. Stability of perovskite solar cells. Solar Energy Materials and Solar Cells. [online]. 147 (2016, Apr.) 255-275.
Available: https://doi.org/10.1016/j.solmat.2015.12.025.
[7] S. Roy and S. Datta. Applications of Polymers in Perovskite Solar Cells: A Review. Ann. Chem. Sci. Res. [online]. 2 (2020, May) 1-4.
Available: https://doi.org/ 10.31031/ACSR.2020.02.000531
[8] P. Da and G. Zheng. Tailoring interface of lead-halide perovskite solar cells. Nano Research. [online]. 10(5) (2017, Jan.) 1471-1497.
Available: https://doi.org/10.1007/s12274-016-1405-2
[9] H. Zhou et al. Interface engineering of highly efficient perovskite solar cells. Science. [online]. 345(6196) (2014, Aug.) 542-546.
Available: https://doi.org/10.1126/science.1254050
[10] W. Yu et al. Effect of ultraviolet absorptivity and waterproofness of poly (3, 4-ethylenedioxythiophene) with extremely weak acidity, high conductivity on enhanced stability of perovskite solar cells. Journal of Power Sources. [online]. 358 (2017, Aug). 29-38.
Available: https://doi.org/10.1016/j.jpowsour.2017.05.007
[11] D. Wei et al. Moisture-tolerant supermolecule for the stability enhancement of organic–inorganic perovskite solar cells in ambient air. Nanoscale. [online]. 11(3) (2019, Dec.) 1228-1235.
Available: https://doi.org/10.1039/C8NR07638C
[12] D. Bi, L. Yang, G. Boschloo, A. Hagfeldt, and E. M. Johansson. Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. The journal of physical chemistry letters. [online]. 4(9) (2013, Apr.) 1532-1536.
Available: https://doi.org/10.1021/jz400638x
[13] S. N. Jafari, A. Ghadimi, and S. Rouhi. Strained Carbon Nanotube (SCNT) thin layer effect on GaAs solar cells efficiency. Journal of Optoelectronical Nanostructures. [online]. 5(4) (2020, Autumn).
Available: 20.1001.1.24237361.2020.
[14] A. Abdolahzadeh Ziabari, S. Royanian, R. Yousefi, and S. Ghoreishi. Performance improvement of ultrathin CIGS solar cells using Al plasmonic nanoparticles: The effect of the position of nanoparticles. Journal of Optoelectronical Nanostructures. [online]. 5(4) (2020, Dec.) 17-32.
Available: https://doi.org/20.1001.1.24237361.2020. 2020.
[15] H. Izadneshan and G. Solookinejad. Effect of annealing on physical properties of Cu2ZnSnS4 (CZTS) thin films for solar cell applications. Journal of Optoelectronical Nanostructures. [online]. 3(2) (2018, Spring). 19-28. Available: https://doi.org/20.1001.1.24237361.2018.
[16] D. Jalalian, A. Ghadimi, and A. Kiani Sarkaleh. Investigation of the effect of band offset and mobility of organic/inorganic HTM layers on the performance of Perovskite solar cells. Journal of Optoelectronical Nanostructures. [online]. 5(2) (2020, Spring) 65-78.
Available: https://doi.org/20.1001.1.24237361.2020.
[17] S. Rafiee Rafat, Z. Ahangari, and M. M. Ahadian. Performance Investigation of a Perovskite Solar Cell with TiO2 and One Dimensional ZnO Nanorods as Electron Transport Layers. Journal of Optoelectronical Nanostructures. [online]. 6(2) (2021, Spring) 75-90. Available: https://doi.org/10.30495/JOPN.2021.28208.1224
[18] Y. Cai et al. Enhancing the efficiency of low-temperature planar perovskite solar cells by modifying the interface between perovskite and hole transport layer with polymers. Electrochimica Acta. [online]. 261 (2018, Jan.) 445-453.
Available: https://doi.org/10.1016/j.electacta.2017.12.135
[19] S. HOSSEİNİ, M. BAHRAMGOUR, A. NİAİE, and N. DELİBAŞ. Interface Modification by Using an Ultrathin P3HT Layer in a Custom Perovskite Solar Cell Through SCAPS-1D Simulation. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. [online]. 25(5) (2021, Oct.) 1168-1179. Available: https://doi.org/10.16984/saufenbilder.947735
[20] K. Tan, P. Lin, G. Wang, Y. Liu, Z. Xu, and Y. Lin. Controllable design of solid-state perovskite solar cells by SCAPS device simulation. Solid-State Electronics. [online]. 126 (2016, Dec) 75-80.
Available: https://doi.org/10.1016/j.sse.2016.09.012
[21] M. Burgelman, P. Nollet, and S. Degrave. Modelling polycrystalline semiconductor solar cells. Thin solid films [online]. 361 (2000, Feb) 527-532. Available: https://doi.org/10.1016/S0040-6090(99)00825-1
[22] A. R. Uhl. Metal counter electrodes for perovskite solar cells. Counter Electrodes for Dye‐sensitized and Perovskite Solar Cells. [online]. 2 (2018, Sep.) 421-456.
Available: https://doi.org/10.1002/9783527813636.ch17
[23] I. Hussain, H. P. Tran, J. Jaksik, J. Moore, N. Islam, and M. J. Uddin. Functional materials, device architecture, and flexibility of perovskite solar cell. Emergent Materials. [online]. 1(3) (2018, Nov.) 133-154. Available: https://doi.org/10.1007/s42247-018-0013-1
[24] K. Ahmadi, A. A. Ziabari, K. Mirabbaszadeh, and S. Ahmadi. Synthesis of TiO2 nanotube array thin films and determination of the optical constants using transmittance data. Superlattices and Microstructures. [online]. 77 (2015, Jan) 25-34. Available: https://doi.org/10.1016/j.spmi.2014.10.024
[25] A. Way et al. Fluorine doped tin oxide as an alternative of indium tin oxide for the bottom electrode of semi-transparent organic photovoltaic devices. AIP Advances. [online]. 9(8) (2019, Aug).
Available: https://doi.org/10.1063/1.5104333
[26] E. Karimi and S. Ghorashi. Investigation of the influence of different hole-transporting materials on the performance of perovskite solar cells. Optik [online]. 130 (2017, Feb.) 650-658.
Available: https://doi.org/10.1016/j.ijleo.2016.10.122
[27] R. Rutsch and J. Toušek. Mobility of Holes and Polarons in Polyaniline Thin Films Determined by Impedance Spectroscopy Measurements. Presented at WDS'18 Proceedings of Contributed Papers — Physics. [online]. (2018) 180-186.
Available: https://www.mff.cuni.cz/veda/konference/wds/proc/pdf18/WDS18_28_f4_Rutsch.pdf